In recent decades the problem of construction and demolition waste has been receiving more attention due to possible ecological and economic damage caused by them. This is because they are produced in large quantities and often receive inadequate disposal, being deposited illegally in vacant lots, public places and even in areas of environmental preservation. The practice of recycling of construction and demolition waste (CDW) by construction is an alternative that minimizes the amount of waste generated and the impacts caused by them. Moreover, the introduction of alternative materials might reduce the production costs of construction. In Brazil, there is great availability of lateritic concretions. This material, according to some studies, proved to be a viable alternative to be used as coarse aggregate in concrete production. In this study, it is used the CDW as a filler to replace 10% of Portland cement and, as coarse aggregate, lateritic concretions. Tests of physical properties of coarse and fine aggregates and determination of the mechanical strength of hardened concrete were made. The construction and demolition waste used as filler to replace the mass of cement in the mixture proved to be a viable alternative.
The partial replacement of cement by mineral additions such as metakaolin has been widely applied in the production of high-strength and durable concretes due to the pozzolanic action, allowing a reduction in the consumption of cement. Tests are performed to determine the mechanical properties of these materials, such as compressive strength, for which there are different levelling techniques of specimens, such as sulphur and neoprene, indicated for different resistance classes. The present study aimed to characterize the behaviour, in the hardened state, of concrete produced with high initial strength Portland cement (CPV-ARI) and metakaolin and evaluate the different levelling methods. Three groups of samples dosed by the IPT-EPUSP method, with mix designs of 1:3, 1:5, and 1:6, and replacements of 8 and 10% of cement by metakaolin, were subjected to compressive strength test, at the ages of 28 days, with levelling by neoprene, and 90 days, with levelling by sulphur. It was observed an increase in strength with addition of metakaolin at both ages. Comparing the results in the two ages, it was verified an increase in strength for the mix designs 1:5 and 1:6 and a reduction for the mix design 1:3. Such fact can be explained by the high strengths achieved by this mix design. As the levelling method used was sulphur, it is confirmed the imprecision of results for strengths above 50 MPa with this technique.
Cement is the costlier component of concrete, and its productive process causes considerable environmental impact. Thus, alternatives are studied to reduce the amount of cement used. An option is the use of optimized grain size curves of aggregates, aiming to achieve a higher compactness of concrete. An ideal grain size distribution results in a higher mechanical resistance of concrete, providing a reduction in cost and consumption of materials, and, consequently, in environmental impacts. Therefore, the present study aims to improve the properties of conventional concrete through optimized grain size distributions. In this research, concrete was produced with binary mixtures with rolled pebbles from Belém region, in Pará state, and ternary mixtures of granitic crushed stone from the metropolitan region of Recife, in Pernambuco state, and concrete properties in the hardened state were studied. The mix design IPT/EPUSP method was used and grain size composition, unit weight, water absorption by capillarity, and compressive strength tests were performed. It was observed an increase in compressive strength with for higher fine contents. Furthermore, for both aggregates studied, there was no loss in strength with the lower amount of cement used, due to the increased compactness of the concrete, indicated by the unit weight of the aggregate mixture. Therefore, the optimization of the grain size composition of the coarse aggregate provided a reduction in the cement consumption for the same required strength and for both analysed aggregates.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.