Women with endometriosis, a benign growth of endometrial tissue outside the uterine cavity, are at increased risk of specific histotypes of epithelial ovarian cancer, such as ovarian endometrioid adenocarcinoma (OEA). Women with OEA who have endometriosis at time of surgical staging demonstrate improved clinical prognosis compared to women with OEA without evidence of endometriosis. However, the molecular contributions of the endometriotic tumor microenvironment to these ovarian cancers remain poorly understood. As a starting point, we used a platform for genome-wide transcriptomic profiling to compare specimens of OEA from women with and without concurrent endometriosis and benign reproductive tract tissues, including proliferative endometrium and typical and atypical endometrioma samples (n = 20). Principle component analysis revealed distinct clustering between benign and malignant samples as well as malignant samples with and without concurrent endometriosis. Examination of gene signatures revealed that OEA with concurrent endometriosis contained a unique molecular signature compared to OEA without concurrent endometriosis, distinguished by 682 unique genes differentially expressed (fold change < or >1.5, p < 0.01). Bioinformatic analysis of these differentially expressed gene products using ingenuity pathway analysis revealed activation of NFkB signaling, an inflammatory signaling pathway constitutively active in endometriosis. DAVID functional annotation clustering further revealed enrichment in RAS signaling as both cytoskeleton organization and GTPase regulator activity relied heavily on RAS protein signal transduction. Gene set enrichment analysis highlighted immune and inflammatory nodes involved in OEA with concurrent endometriosis. These observations provide novel resources for understanding molecular subtleties potentially involved in OEA within the context of the endometriotic tumor microenvironment.
The transgenic insertional mouse mutation Odd Sex (Ods) represents a model for the long-range regulation of Sox9. The mutation causes complete female-to-male sex reversal by inducing a male-specific expression pattern of Sox9 in XX Ods/ϩ embryonic gonads. We previously described an A/J strain-specific suppressor of Ods termed Odsm1 A . Here we show that phenotypic sex depends on a complex interaction between the suppressor and the transgene. Suppression can be achieved only if the transgene is transmitted paternally. In addition, the suppressor itself exhibits a maternal effect, suggesting that it may act on chromatin in the early embryo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.