The development of efficient metal-free organic emitters with thermally activated delayed fluorescence (TADF) properties for deep-blue emission is still challenging. A new family of deep-blue TADF emitters based on a donor-acceptor architecture has been developed. The electronic interaction between donor and acceptor plays a key role in the TADF mechanism. Deep-blue OLEDs fabricated with these TADF emitters achieved high external quantum efficiencies over 19.2 % with CIE coordinates of (0.148, 0.098).
In an ideal model, a p-n junction is formed by two stacked slabs of semiconductors. Although the construction of actual devices is generally more complex, we show that such a simple method can in fact be applied to the formation of organic heterojunctions. Two films of the organic semiconductors poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) can be connected by a simple film-transfer method without disturbing their flat surfaces. Each film can further be modified with a surface-segregated monolayer to tune the strength and direction of the surface dipole moment. Using this method, we fabricated bilayer organic photovoltaic devices with interfacial dipole moments that were selected to align the energy levels at the heterojunction. The open-circuit voltages of the P3HT/PCBM devices could be tuned over a wide range between 0.3 and 0.95 V, indicating that, even if the same combination of bulk materials is used, the interfacial properties drastically alter the performance of organic photovoltaic devices.
Experiments using a mechanically controlled break junction and calculations based on density functional theory demonstrate a new magic ratio rule (MRR) that captures the contribution of connectivity to the electrical conductance of graphene-like aromatic molecules. When one electrode is connected to a site i and the other is connected to a site i' of a particular molecule, we assign the molecule a "magic integer" Mii'. Two molecules with the same aromatic core but different pairs of electrode connection sites (i,i' and j,j', respectively) possess different magic integers Mii' and Mjj'. On the basis of connectivity alone, we predict that when the coupling to electrodes is weak and the Fermi energy of the electrodes lies close to the center of the HOMO-LUMO gap, the ratio of their conductances is equal to (Mii'/Mjj')(2). The MRR is exact for a tight-binding representation of a molecule and a qualitative guide for real molecules.
The last two years have witnessed the rapid progress of organic solar cells (OSCs), driven by the newly developed nonfullerene acceptor (NFA) Y6, which contains an electron-deficient-core-based central fused ring....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.