A novel nonenzymatic immunosensor for sensitive detection of Microcystin‐LR (MC‐LR) is constructed using a graphene platform combined with mesoporous PtRu alloy as a label for signal amplification. Primary antibody‐Microcystin‐LR (Ab1) is immobilized onto the surface of a graphene sheet (GS) through an amidation reaction between the carboxylic acid groups attached to the GS and the available amine groups of Ab1. Mesoporous PtRu alloy, prepared by corrosion PtRuAl alloys, is employed as a label to immobilize secondary antibody (Ab2). The resulting nanoparticles, PtRu‐Ab2, are used as labels for the immunosensor to detect MC‐LR. Under optimal conditions, the immunosensor exhibits a wide linear response to MC‐LR that ranges from 0.01 to 28 ng·mL−1, with a low detection limit of 9.63 pg·mL−1 MC‐LR. The proposed immunsensor shows good reproducibility, selectivity, and stability. The assayed results of polluted water with the sandwich‐type sensor are acceptable. Importantly, this methodology may provide a promising ultrasensitive assay strategy for other environmental pollutants.
Knowing how acid soils and aluminum in soils may limit the growth of Eucalyptus trees in plantations is important because these plantations grow in many tropical and subtropical regions. Seedlings of four vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla ‘GLGU9’(G9), E. grandis × E. urophylla ‘GLGU12’ (G12), E. urophylla × E. camaldulensis ‘GLUC3’ (G3) and E. urophylla ‘GLU4’(G4), were subjected to liquid culture with Hoagland nutrient solution for 40 days, then treated with four different treatments of acid and aluminum for 1 day. The four treatments used either pH 3.0 or 4.0 with or without added aluminum (4.4 mM) in all possible combinations; a control used no added aluminum at pH 4.8. Subsequently, the photosynthetic parameters and morphology of leaves from eucalypt seedlings were determined and observed. The results showed that the tested chlorophyll content, net photosynthetic rate, transpiration rate and water use efficiency were apparently inhibited by aluminum. Under uniform Al concentration (4.4 mM), the Al-induced limitation to photosynthetic parameters increased with pH, indicating acid stimulation to Al toxicity. Among all treatments, the most significant reduction was found in the combination of pH 3.0 and 4.4 mM Al. The photosynthetic and transpiration rates showed similar trends with G9 > G12 > G3 > G4, suggesting that G9 and G12 had higher Al-tolerance than other two clones. Microscopic observation revealed changes in leaf morphology when exposed to Al stress; for example, a reduced thickness of leaf epidermis and palisade tissue, the descendant palisade tissue/spongy tissue ratio and leaf tissue looseness. Overall, the acid and aluminum stress exerted negative effects on the photosynthetic activity of eucalypt seedlings, but the differences in tolerance to Al toxicity between the clones were favorable, offering potential to improve Eucalyptus plantation productivity by selecting Al tolerant clones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.