Aiming at the problem encountered in the previous research: during the electrical activity of cardiomyocytes, the influent ions do not seem to be directly derived from the extracellular fluid. We chose to cut in from the colloidal properties of the cells, follow the basic principles of physical chemistry, and establish hypotheses along the derivation of the structural characteristics of cardiomyocytes. Through the surface ion adsorption experiment and patch clamp experiment of living cells, under the condition of sequentially reducing the concentration of Na+ in the extracellular fluid, we observed the exchange and diffusion of adsorbed ions on the cell surface; the changes of inflow INa, ICa-L and action potential; and correlation between results. The results showed that the hypothesis is true. The observed parameter changes were consistent with the fact that during depolarization of cardiomyocytes, the ions of influx were derived from the inference of adsorbed ions on the cell surface; at the same time, it also provided an objective and realistic explanation for the generation of electrocardiogram.
We applied a new idea that the potential effect can change the ion adsorption structure on the cell surface to explore the mechanism of digoxin poisoning and the regulation of ion channels. The effects of digoxin on the electrophoretic mobility and behaviors (non-contraction or contraction or autorhythmicity) of cardiomyocytes were observed by single-cell electrophoresis technique (imitate the opening method of in vivo channel) and the method of decomposing surface potential components on the cells. As well as affect the association with electrical activity. The results suggested that the increase of cardiomyocytes transmembrane potential and the Na+–K+ exchange on the cell surface of the action potential phase 4 caused by the poisoning dose of digoxin, leading to the oscillation of adsorbed ions on the cell surface and the incomplete channel structure, which were the mechanism of cardiac ectopic beats. The results revealed that the opening of ion channels is regulated by the surface electric double layer of the cell membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.