A thermally stable 3 x 3 octahedral molecular sieve corresponding to natural todorokite (OMS-1) has been synthesized by autoclaving layer-structure manganese oxides, which are prepared by reactions of MnO(4)(-) and Mn(2+) under markedly alkaline conditions. The nature and thermal stability of products depend strongly on preparation parameters, such as the MnO(4)(-)/Mn(2+) ratio, pH, aging, and autoclave conditions. The purest and the most thermally stable todorokite is obtained at a ratio of 0.30 to 0.40. Autoclave treatments at about 150 degrees to 180 degrees C for more than 2 days yield OMS-1, which is as thermally stable (500 degrees C) as natural todorokite minerals. Adsorption data give a tunnel size of 6.9 angstroms and an increase of cyclohexane or carbon tetrachloride uptake with dehydration temperature up to 500 degrees C. At 600 degrees C, the tunnel structure collapses. Both Lewis and Brönsted acid sites have been observed in OMS-1. Particular applications of these materials include adsorption, electrochemical sensors, and oxidation catalysis.
Graphite-phase polymeric carbon nitride (GPPCN) has emerged as a promising metal-free material toward optoelectronics and (photo)catalysis. However, the insolubility of GPPCN remains one of the biggest impediments toward its potential applications. Herein, we report that GPPCN could be dissolved in concentrated sulfuric acid, the first feasible solvent so far, due to the synergistic protonation and intercalation. The concentration was up to 300 mg/mL, thousands of time higher than previous reported dispersions. As a result, the first successful liquid-state NMR spectra of GPPCN were obtained, which provides a more feasible method to reveal the finer structure of GPPCN. Moreover, at high concentration, a liquid crystal phase for the carbon nitride family was first observed. The successful dissolution of GPPCN and the formation of highly anisotropic mesophases would greatly pave the potential applications such as GPPCN-based nanocomposites or assembly of marcroscopic, ordered materials.
Graphene quantum dots (GQDs) and carbon dots (C-dots) have various alluring properties and potential applications, but they are often limited by unsatisfied optical performance such as low quantum yield, ambiguous fluorescence emission mechanism, and narrow emission wavelength. Herein, we report that bulk polymeric carbon nitride could be utilized as a layered precursor to prepare carbon nitride nanostructures such as nanorods, nanoleaves and quantum dots by chemical tailoring. As doped carbon materials, these carbon nitride nanostructures not only intrinsically emitted UV lights but also well inherited the explicit photoluminescence mechanism of the bulk pristine precursor, both of which were rarely reported for GQDs and C-dots. Especially, carbon nitride quantum dots (CNQDs) had a photoluminescence quantum yield (QY) up to 46%, among the highest QY for metal-free quantum dots so far. As examples, the CNQDs were utilized as a photoluminescence probe for rapid detection of Fe(3+) with a detection limit of 1 μM in 2 min and a photoconductor in an all-solid-state device. This work would open up an avenue for doped nanocarbon in developing photoelectrical devices and sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.