Most BRCA1-associated breast tumours are basal-like yet originate from luminal progenitors. BRCA1 is best known for its functions in double-strand break repair and resolution of DNA replication stress. However, it is unclear whether loss of these ubiquitously important functions fully explains the cell lineage-specific tumorigenesis. In vitro studies implicate BRCA1 in elimination of R-loops, DNA-RNA hybrid structures involved in transcription and genetic instability. Here we show that R-loops accumulate preferentially in breast luminal epithelial cells, not in basal epithelial or stromal cells, of BRCA1 mutation carriers. Furthermore, R-loops are enriched at the 5′ end of those genes with promoter-proximal RNA polymerase II (Pol II) pausing. Genetic ablation of Cobra1, which encodes a Pol II-pausing and BRCA1-binding protein, ameliorates R-loop accumulation and reduces tumorigenesis in Brca1-knockout mouse mammary epithelium. Our studies show that Pol II pausing is an important contributor to BRCA1-associated R-loop accumulation and breast cancer development.
Mutations in BRCA1 increase risks of familial breast and ovarian cancers, particularly among premenopausal women. While BRCA1 plays an active role in DNA repair, this function alone may not be sufficient to explain why BRCA1-associated tumors predominantly occur in estrogen-responsive tissues. Aromatase is the rate-limiting enzyme in estrogen biosynthesis and a key target in breast cancer treatment. Aromatase expression in ovarian granulosa cells dictates levels of circulating estrogen in premenopausal women, and its aberrant overexpression in breast adipose tissues promotes breast cancer growth. Here, we show that BRCA1 modulates aromatase expression in ovarian granulosa cells and primary preadipocytes. The cyclic AMP-dependent expression of aromatase in ovarian granulosa cells is inversely correlated with the protein level of BRCA1. Importantly, transient knockdown of BRCA1 enhances aromatase expression in both ovarian granulosa cells and primary preadipocytes. We propose that BRCA1 deficiency in epithelial and certain nonepithelial cells may result in combined effects of aberrant estrogen biosynthesis and compromised DNA repair capability, which in turn may lead to specific cancers in the breast and ovary.
Programmed death-ligand 1 (PD-L1) and its receptor programmed cell death protein 1 (PD-1) modulate antitumor immunity and are major targets of checkpoint blockade immunotherapy. However, clinical trials of anti-PD-L1 and anti-PD-1 antibodies in breast cancer demonstrate only modest efficacy. Furthermore, specific PD-L1 contributions in various tissue and cell compartments to antitumor immunity remain incompletely elucidated. Here we show that PD-L1 expression is markedly elevated in mature adipocytes versus preadipocytes. Adipocyte PD-L1 prevents anti-PD-L1 antibody from activating important antitumor functions of CD8+ T cells in vitro. Adipocyte PD-L1 ablation obliterates, whereas forced preadipocyte PD-L1 expression confers, these inhibitory effects. Pharmacologic inhibition of adipogenesis selectively reduces PD-L1 expression in mouse adipose tissue and enhances the antitumor efficacy of anti-PD-L1 or anti-PD-1 antibodies in syngeneic mammary tumor models. Our findings provide a previously unappreciated approach to bolster anticancer immunotherapy efficacy and suggest a mechanism for the role of adipose tissue in breast cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.