Screening of microorganisms producing flocculating substances was carried out. A strain secreting a large amount of bioflocculant was isolated from wastewater samples collected from the Little Moon River in Beijing. Based on the morphological properties and 16S rDNA sequence analysis, the isolate (designated W31) was classified as Vagococcus sp. A bioflocculant (named MBFW31) produced by W31 was extracted from the culture broth by ethanol precipitation and purified by gel chromatography. MBFW31 was heat-stable and had strong flocculating activity in a wide range of pH with relatively low dosage requirement. MBFW31 was identified as a polysaccharide with molecular weight over 2 x 10(6). It contained neutral sugar and uronic acid as its major and minor components, respectively. Infrared spectra showed the presence of hydroxyl, carboxyl and methoxyl group in its molecules. The present results suggested that MBFW31 had potential application in wastewater treatment.
Solid‐state lithium battery promises highly safe electrochemical energy storage. Conductivity of solid electrolyte and compatibility of electrolyte/electrode interface are two keys to dominate the electrochemical performance of all solid‐state battery. By in situ polymerizing poly(ethylene glycol) methyl ether acrylate within self‐supported three‐dimensional porous Li1.3Al0.3Ti1.7(PO4)3 framework, the as‐assembled solid‐state battery employing 4.5 V LiNi0.8Mn0.1Co0.1O2 cathode and Li metal anode demonstrates a high Coulombic efficiency exceeding 99% at room temperature. Solid‐state nuclear magnetic resonance results reveal that Li+ migrates fast along the continuous Li1.3Al0.3Ti1.7(PO4)3 phase and Li1.3Al0.3Ti1.7(PO4)3/polymer interfacial phase to generate a fantastic conductivity of 2.0 × 10−4 S cm−1 at room temperature, which is 56 times higher than that of pristine poly(ethylene glycol) methyl ether acrylate. Meanwhile, the in situ polymerized poly(ethylene glycol) methyl ether acrylate can not only integrate the loose interfacial contact but also protect Li1.3Al0.3Ti1.7(PO4)3 from being reduced by lithium metal. As a consequence of the compatible solid‐solid contact, the interfacial resistance decreases significantly by a factor of 40 times, resolving the notorious interfacial issue effectively. The integrated strategy proposed by this work can thereby guide both the preparation of highly conductive solid electrolyte and compatible interface design to boost practical high energy density all solid‐state lithium metal battery.
In the past several years, microRNAs have been identified as a class of important regulators of gene expression. One hot topic in the microRNA field is the location of microRNA genes. Most microRNAs are called intronic microRNAs, which are encoded in the introns of coding or non-coding genes. Some research studies have shown that intronic miRNAs coexpress and act similarly to their host genes; however, other research studies have suggested that their level of expression and function are opposite to that of their host genes. Intronic microRNAs have been reported to play an antagonistic or synergetic role as an enemy or a partner of their host genes. Elucidation of the relationship between intronic microRNAs and their host genes will facilitate a deeper understanding of gene expression and the function of introns. This mini review will discuss recent research addressing intronic microRNAs and their host genes.
The transition from liver fibrosis to hepatocellular carcinoma (HCC) has been suggested to be a continuous and developmental pathological process. MicroRNAs (miRNAs) are recently discovered molecules that regulate the expression of genes involved in liver disease. Many reports demonstrate that miR-483-5p and miR-483-3p, which originate from miR-483, are up-regulated in HCC, and their oncogenic targets have been identified. However, recent studies have suggested that miR-483-5p/3p is partially down-regulated in HCC samples and is down-regulated in rat liver fibrosis. Therefore, the aberrant expression and function of miR-483 in liver fibrosis remains elusive. In this study, we demonstrate that overexpression of miR-483 in vivo inhibits mouse liver fibrosis induced by CCl4. We demonstrate that miR-483-5p/3p acts together to target two pro-fibrosis factors, platelet-derived growth factor-β and tissue inhibitor of metalloproteinase 2, which suppress the activation of hepatic stellate cells (HSC) LX-2. Our work identifies the pathway that regulates liver fibrosis by inhibiting the activation of HSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.