PurposePhysiologic monitors are plagued with alarms that create a cacophony of sounds and visual alerts causing “alarm fatigue” which creates an unsafe patient environment because a life-threatening event may be missed in this milieu of sensory overload. Using a state-of-the-art technology acquisition infrastructure, all monitor data including 7 ECG leads, all pressure, SpO2, and respiration waveforms as well as user settings and alarms were stored on 461 adults treated in intensive care units. Using a well-defined alarm annotation protocol, nurse scientists with 95% inter-rater reliability annotated 12,671 arrhythmia alarms.ResultsA total of 2,558,760 unique alarms occurred in the 31-day study period: arrhythmia, 1,154,201; parameter, 612,927; technical, 791,632. There were 381,560 audible alarms for an audible alarm burden of 187/bed/day. 88.8% of the 12,671 annotated arrhythmia alarms were false positives. Conditions causing excessive alarms included inappropriate alarm settings, persistent atrial fibrillation, and non-actionable events such as PVC's and brief spikes in ST segments. Low amplitude QRS complexes in some, but not all available ECG leads caused undercounting and false arrhythmia alarms. Wide QRS complexes due to bundle branch block or ventricular pacemaker rhythm caused false alarms. 93% of the 168 true ventricular tachycardia alarms were not sustained long enough to warrant treatment.DiscussionThe excessive number of physiologic monitor alarms is a complex interplay of inappropriate user settings, patient conditions, and algorithm deficiencies. Device solutions should focus on use of all available ECG leads to identify non-artifact leads and leads with adequate QRS amplitude. Devices should provide prompts to aide in more appropriate tailoring of alarm settings to individual patients. Atrial fibrillation alarms should be limited to new onset and termination of the arrhythmia and delays for ST-segment and other parameter alarms should be configurable. Because computer devices are more reliable than humans, an opportunity exists to improve physiologic monitoring and reduce alarm fatigue.
A waveguide-based retrieval method for measuring complex permittivity and permeability tensors of metamaterials is presented. In the proposed scheme, multiple independent sets of scattering data for the material under test with different orientations are measured in the frequency range corresponding to the dominant TE(10) mode. The method is applied to various metamaterials and shows its effectiveness in the effective parameters extraction.
Referring object detection and referring image segmentation are important tasks that require joint understanding of visual information and natural language. Yet there has been evidence that current benchmark datasets suffer from bias, and current state-of-the-art models cannot be easily evaluated on their intermediate reasoning process. To address these issues and complement similar efforts in visual question answering, we build CLEVR-Ref+, a synthetic diagnostic dataset for referring expression comprehension. The precise locations and attributes of the objects are readily available, and the referring expressions are automatically associated with functional programs. The synthetic nature allows control over dataset bias (through sampling strategy), and the modular programs enable intermediate reasoning ground truth without human annotators.In addition to evaluating several state-of-the-art models on CLEVR-Ref+, we also propose IEP-Ref, a module network approach that significantly outperforms other models on our dataset. In particular, we present two interesting and important findings using IEP-Ref:(1) the module trained to transform feature maps into segmentation masks can be attached to any intermediate module to reveal the entire reasoning process step-by-step; (2) even if all training data has at least one object referred, IEP-Ref can correctly predict no-foreground when presented with false-premise referring expressions. To the best of our knowledge, this is the first direct and quantitative proof that neural modules behave in the way they are intended. 1
Fine-grained visual classification (FGVC) which aims at recognizing objects from subcategories is a very challenging task due to the inherently subtle inter-class differences. Recent works mainly tackle this problem by focusing on how to locate the most discriminative image regions and rely on them to improve the capability of networks to capture subtle variances. Most of these works achieve this by reusing the backbone network to extract features of selected regions. However, this strategy inevitably complicates the pipeline and pushes the proposed regions to contain most parts of the objects. Recently, vision transformer (ViT) shows its strong performance in the traditional classification task. The self-attention mechanism of the transformer links every patch token to the classification token. The strength of the attention link can be intuitively considered as an indicator of the importance of tokens. In this work, we propose a novel transformer-based framework TransFG where we integrate all raw attention weights of the transformer into an attention map for guiding the network to effectively and accurately select discriminative image patches and compute their relations. A contrastive loss is applied to further enlarge the distance between feature representations of similar sub-classes. We demonstrate the value of TransFG by conducting experiments on five popular finegrained benchmarks: CUB-200-2011, Stanford Cars, Stanford Dogs, NABirds and iNat2017 where we achieve stateof-the-art performance. Qualitative results are presented for better understanding of our model. Code is available at this https URL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.