Bismuth selenide becomes superconducting upon coupling to metallic niobium, and its topological states pair up to form a gap.
Elastic strain has the potential for a controlled manipulation of the band gap and spin-polarized Dirac states of topological materials, which can lead to pseudomagnetic field effects, helical flat bands, and topological phase transitions. However, practical realization of these exotic phenomena is challenging and yet to be achieved. Here we show that the Dirac surface states of the topological insulator BiSe can be reversibly tuned by an externally applied elastic strain. Performing in situ X-ray diffraction and in situ angle-resolved photoemission spectroscopy measurements during tensile testing of epitaxial BiSe films bonded onto a flexible substrate, we demonstrate elastic strains of up to 2.1% and quantify the resulting changes in the topological surface state. Our study establishes the functional relationship between the lattice and electronic structures of BiSe and, more generally, demonstrates a new route toward momentum-resolved mapping of strain-induced band structure changes.
Interfacing bulk conducting topological Bi2Se3 films with s-wave superconductors initiates strong superconducting order in the nontrivial surface states. However, bulk insulating topological (Bi1-xSbx)2Te3 films on bulk Nb instead exhibit a giant attenuation of surface superconductivity, even for films only two-layers thick. This massive suppression of proximity pairing is evidenced by ultrahigh-resolution band mappings and by contrasting quantified superconducting gaps with those of heavily n-doped topological Bi2Se3/Nb. The results underscore the limitations of using superconducting proximity effects to realize topological superconductivity in nearly intrinsic systems.
Quantum dot (QD)-based RGB micro light-emitting diode (μ-LED) technology shows immense potential for achieving full-color displays. In this study, we propose a novel structural design that combines blue and quantum well (QW)-intermixing ultraviolet (UV)-hybrid μ-LEDs to achieve high color-conversion efficiency (CCE). For the first time, the impact of various combinations of QD and TiO2 concentrations, as well as thickness variations on photoluminescence efficiency (PLQY), has been systematically examined through simulation. High-efficiency color-conversion layer (CCL) have been successfully fabricated as a result of these simulations, leading to significant savings in time and material costs. By incorporating scattering particles of TiO2 in the CCL, we successfully scatter light and disperse QDs, effectively reducing self-aggregation and greatly improving illumination uniformity. Additionally, this design significantly enhances light absorption within the QD films. To enhance device reliability, we introduce a passivation protection layer using low-temperature atomic layer deposition (ALD) technology on the CCL surface. Moreover, we achieve impressive CCE values of 96.25% and 92.91% for the red and green CCLs, respectively, by integrating a modified distributed Bragg reflector (DBR) to suppress light leakage. Our hybrid structure design, in combination with an optical simulation system, not only facilitates rapid acquisition of optimal parameters for highly uniform and efficient color conversion in μ-LED displays but also expands the color gamut to achieve 128.2% in the National Television Standards Committee (NTSC) space and 95.8% in the Rec. 2020 standard. In essence, this research outlines a promising avenue towards the development of bespoke, high-performance μ-LED displays.
In this research, we compared the performance of commercial μ-LEDs and three-layered staggered QW μ-LED arrays. We also investigated the self-heating effect. We proposed a green micro-resonant cavity light-emitting diode (µ-RCLED) that consists of a three-layer staggered InGaN with multiple quantum wells (MQWs), a bottom layer of nanoporous n-GaN distributed Bragg reflectors (DBRs), and a top layer of Ta2O5/SiO2 DBRs. We systematically performed simulations of the proposed µ-RCLEDs. For the InGaN MQWs with an input current of 300 mA, the calculated wavefunction overlaps are 8.8% and 18.1% for the regular and staggered structures, respectively. Furthermore, the staggered MQWs can reduce the blue-shift of electroluminescence from 10.25 nm, obtained with regular MQWs, to 2.25 nm. Due to less blue-shift, the output power can be maintained even at a high input current. Conversely, by employing 6.5 pairs of Ta2O5/SiO2 DBRs stacks, the full width at half maximum (FWHM) can be significantly reduced from 40 nm, obtained with ordinary µ-LEDs, to 0.3 nm, and a divergence angle smaller than 60° can be obtained. Our simulation results suggest that the µ-RCLEDs can effectively resolve the wavelength instability and color purity issues of conventional µ-LEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.