Accumulating evidence suggests that anti-inflammatory agents and antioxidants have neuroprotective properties and may be beneficial in the treatment of neurodevelopental disorders, such as autism. In the present study, the possible neuroprotective properties of sulindac, a non-steroidal anti-inflammatory drug (NSAID), were investigated in vitro using cultured cortical neurons with valproic acid (VPA)-induced neurotoxicity, as well as in vivo through the behavioral analysis of rats prenatally exposed to VPA as a model of autism. VPA induced 4-hydroxynonenal (4-HNE) expression, reactive oxygen species (ROS) generation and decreased cell viability in primary cultured cortical neurons established from timed-pregnant (embryonic day 18) Wistar rat pups. However, co-incubation of the neurons with VPA and sulindac reduced oxidative stress and increased cell viability. The rats were administered an intraperitoneal injection with one of the following: VPA, sulindac, VPA and sulindac, or physiological saline, and their offspring were subjected to the open field test. During the test trials, repetitive/stereotypic-like movements for each rat were recorded and analyzed. The results revealed that treatment with both sulindac and VPA reduced the VPA-induced repetitive/stereotypic-like activity and the sulindac and VPA-treated animals responded better in the open field test compared to the VPA-treated animals. The results from the present study demonstrate that the antioxidant properties of sulindac may prove to be beneficial in the treatment of autism, suggesting that the upregulation of the Wnt/β-catenin signaling pathway disrupts oxidative homeostasis and facilitates susceptibility to autism.
Increasing evidence has demonstrated that the tumor suppressor gene deleted in liver cancer-1 (DLC1) is tightly implicated in the development and progression of tumors and is verified to be downregulated in a variety of tumors. However, the roles and precise molecular mechanisms of DLC1 in cutaneous squamous cell carcinoma (cutaneous SCC) remain to be elucidated. In the present study, we confirmed the reduced level in cutaneous SCC tissues and cells, and DLC1 mRNA relative level in cutaneous SCC tissues with lymph node metastasis (0.801 ± 0.079) was markedly lower than those without lymph node metastasis (1.245 ± 0.071) (P < 0.0001). Importantly, the survival rates of patients with low DLC1 level were lower than those with high DLC1 level (P = 0.0051). Further investigation revealed that DLC1 overexpression inhibited proliferation and arrested cell cycle at G0/G1 phase in A431 cells, which may be tightly associated with upregulation of p21 protein and downregulation of cyclin D1 and cdk2 proteins. Moreover, the decreases of FAK and p-FAK as well as the increase of E-cadherin level mediated by elevated DLC1 level suppressed invasion in A431 cells. Additionally, DLC1 overexpression induced apoptosis coupled with elevations of Bax level and caspase-3 activity and decrease of Bcl-2 level in A431 cells. Taken altogether, our data presented herein suggest that DLC1 plays a pivotal role in the development and progression of cutaneous SCC, which may be in part achieved by regulating the signaling pathway related to proliferation, invasion, cell cycle, and apoptosis in cutaneous SCC cells.
Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor, which has been revealed to inhibit proliferation in tumor cells. However, the effect of icotinib on cancer cell metastasis remains to be explained. This study examines the effect of icotinib on the migration and invasion of squamous cells of tongue carcinoma (Tca8113 cells) in vitro. The results of the Boyden chamber invasion assay demonstrated that icotinib reduced cell invasion, suppressed the protein levels of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and increased the expression of tissue inhibitor of metalloproteinase-1. In addition, icotinib was found to significantly decrease the protein levels of nuclear factor κB (NF-κB) p65, which suggested that icotinib inhibits NF-κB activity. Furthermore, treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate, suppressed cell invasion and MMP-2 expression. These results suggested that icotinib inhibits the invasion of Tca8113 cells by downregulating MMP via the inactivation of the NF-κB signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.