Concrete expanded-plate piles have significant advantages in the bearing capacity, settlement, and construction period. The added bearing expanded plate is the key reason for their many advantages; moreover, the slope angle (α angle: the maximum diameter of the bearing expanded plate and the angle formed on the plate) of the bearing expanded plate is the main factor to control the longitudinal symmetry. However, the concrete expanded-plate piles in practical engineering do not exist in a rigid body state, and elastic deformation will occur under variable engineering conditions. In addition, the research in this paper mainly focuses on a flexible concrete expanded-plate pile (F-CEP pile). The flexible pile mentioned in this paper refers to the bending deformation of the pile body under horizontal load, which produces large pile top displacement. This study uses the two methods of small-scale half-plane pile model test and finite element simulation analysis of ANSYS, after referring to the equipotential pile test at the actual site. In this paper, the variation law of the displacement curve and the failure law of the soil around the pile under the horizontal force when the α angle changes are analyzed, and the calculation model of the bearing capacity of F-CEP pile under the α angle change is put forward. This research aims to verify the reliability of existing research and provides strong support for the application, promotion, design, and research of F-CEP piles in construction engineering.
To explore the effect of snow-melting agents on the glass fiber-reinforced cemented soil under freezing-thawing cycles, three widely used snow-melting agents, including potassium acetate, magnesium chloride, and sodium sulfate, were used in this article. The effects of snow-melting agent types on the apparent damage, mass loss, and mechanical properties of fiber-reinforced cemented soil under freezing-thawing cycles were analyzed through salt freezing and unconfined compressive strength tests. The results show that the snow-melting effect of potassium acetate is the best, the snow-melting effect of magnesium chloride is the second, and the snow-melting effect of sodium sulfate is the worst. Notably, as the number of freezing-thawing cycles increases, the strength of the test block decreases to varying degrees. After the fifth freezing-thawing cycle, the strength of the block without fiber decreased by 61.30%, 70.22%, and 81.58% in clear water, potassium acetate, and magnesium chloride solution, respectively, while the test block in sodium sulfate solution lost its bearing capacity. A series of studies proved that the snow-melting agent with sodium sulfate as the main component has the most apparent erosion effect on the cemented soil, followed by magnesium chloride, and the erosion effect of potassium acetate is the weakest. The incorporation of glass fiber can effectively improve the resistance of the cemented soil under the action of various salt solution erosion and freezing-thawing coupling and has a significant effect on slowing the development of surface cracks, improving peak strength, and reducing the mass loss rate. This research will provide theoretical support for the design of subgrade and the selection of snow-melting agents in cold areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.