Debris flows are a major geological disaster that can seriously threaten human life and physical infrastructures. The main contribution of this paper is the establishment of two–dimensional convolutional neural networks (2D–CNN) models by using SAME padding (S–CNN) and VALID padding (V–CNN) and comparing them with support vector machine (SVM) and artificial neural network (ANN) models, respectively, to predict the spatial probability of debris flows in Jilin Province, China. First, the dataset is randomly divided into a training set (70%) and a validation set (30%), and thirteen influencing factors are selected to build the models. Then, multicollinearity analysis and gain ratio methods are used to quantify the predictive ability of factors. Finally, the area under the receiver operatic characteristic curve (AUC) and statistical methods are utilized to measure the accuracy of the models. The results show that the S–CNN model gets the highest AUC value of 0.901 in the validation set, followed by the SVM model, the V–CNN model, and the ANN model. Three statistical methods also show that the S–CNN model produces minimum errors compared with other models. The S–CNN model is hailed as an important means to improve the accuracy of debris–flow susceptibility mapping and provides a reasonable scientific basis for critical decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.