Background: Hyperhomocysteinemia (hHcys) contributes to glomerular injury by activating NLRP3 inflammasomes in response to increased oxidative stress. Results: Thioredoxin-interacting protein (TXNIP) aggregated with NLRP3 inflammasomes, and blocking TXNIP prevented inflammasome activation during hHcys. Conclusion: TXNIP uniquely links changes in oxidative stress to hHcys-induced NLRP3 inflammasome activation. Significance: Glomerular injury related to hHcys can be prevented by TXNIP inhibition.
The NLRP3 inflammasome has been reported to be activated by atherogenic factors, whereby endothelial injury and consequent atherosclerotic lesions are triggered in the arterial wall. However, the mechanisms activating and regulating NLRP3 inflammasomes remain poorly understood. The present study tested whether acid sphingomyelinase (ASM) and ceramide associated membrane raft (MR) signaling platforms contribute to the activation of NLRP3 inflammasomes and atherosclerotic lesions during hypercholesterolemia. We found that 7-ketocholesterol (7-Keto) or cholesterol crystal (ChC) markedly increased the formation and activation of NLRP3 inflammasomes in mouse carotid arterial endothelial cells (CAECs), as shown by increased colocalization of NLRP3 with ASC or caspase-1, enhanced caspase-1 activity and elevated IL-1β levels, which were markedly attenuated by mouse Asm siRNA, ASM inhibitor- amitriptyline, and deletion of mouse Asm gene. In CAECs with NLRP3 inflammasome formation, membrane raft (MR) clustering with NADPH oxidase subunits was found remarkably increased as shown by CTXB (MR marker) and gp91phox aggregation indicating the formation of MR redox signaling platforms. This MR clustering was blocked by MR disruptor (MCD), ROS scavenger (Tempol) and TXNIP inhibitor (verapamil), accompanied by attenuation of 7-Keto or ChC-induced increase in caspase-1 activity. In animal experiments, Western diet fed mice with partially ligated left carotid artery (PLCA) were found to have significantly increased neointimal formation, which was associated with increased NLRP3 inflammasome formation and IL-1β production in the intima of Asm+/+ mice but not in Asm-/- mice. These results suggest that Asm gene and ceramide associated MR clustering are essential to endothelial inflammasome activation and dysfunction in the carotid arteries, ultimately determining the extent of atherosclerotic lesions.
The loss of endothelial connective integrity and endothelial barrier dysfunction can lead to increased vascular injury, which is related to the activation of endothelial inflammasomes. There are evidences that low concentrations of aspirin can effectively prevent cardiovascular diseases. We hypothesized that low-dose aspirin could ameliorate endothelial injury by inhibiting the activation of NLRP3 inflammasomes and ultimately prevent cardiovascular diseases. Microvascular endothelial cells were stimulated by lipopolysaccharide (2 μg/mL) and administrated by 0.1–2 mmol/L aspirin. The wild type mice were stimulated with LPS (100 μg/kg/day), and 1 h later treated with aspirin (12.5, 62.5, or 125 mg/kg/day) and dexamethasone (0.0182 mg/kg/day) for 7 days. Plasma and heart were harvested for measurement of ELISA and immunofluorescence analyses. We found that aspirin could inhibit NLRP3 inflammasome formation and activation
in vitro
in dose-dependent manner and has correlation between the NLRP3 inflammasome and the ROS/TXNIP pathway. We also found that low-concentration aspirin could inhibit the formation and activation of NLRP3 inflammasome and restore the expression of the endothelial tight junction protein zonula occludens-1/2 (ZO1/2). We assume that aspirin can ameliorate the endothelial layer dysfunction by suppressing the activation of NLRP3 inflammasome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.