Acute kidney injury (AKI) and chronic kidney disease (CKD) are posing great threats to global health within this century. Studies have suggested that estrogen and estrogen receptors (ERs) play important roles in many physiological processes in the kidney. For instance, they are crucial in maintaining mitochondrial homeostasis and modulating endothelin-1 (ET-1) system in the kidney. Estrogen takes part in the kidney repair and regeneration via its receptors. Estrogen also participates in the regulation of phosphorus homeostasis via its receptors in the proximal tubule. The ERa polymorphisms have been associated with the susceptibilities and outcomes of several renal diseases. As a consequence, the altered or dysregulated estrogen/ERs signaling pathways may contribute to a variety of kidney diseases, including various causes-induced AKI, diabetic kidney disease (DKD), lupus nephritis (LN), IgA nephropathy (IgAN), CKD complications, etc. Experimental and clinical studies have shown that targeting estrogen/ERs signaling pathways might have protective effects against certain renal disorders. However, many unsolved problems still exist in knowledge regarding the roles of estrogen and ERs in distinct kidney diseases. Further research is needed to shed light on this area and to enable the discovery of pathwayspecific therapies for kidney diseases.
Three members of the peroxisome proliferator-activated receptor (PPAR) family, PPARα, PPARγ, and PPARβ/δ, have been investigated widely over the past few decades. Although the roles of these PPARs and their agonists/antagonists were defined in clinical and basic studies, the conflicting results from these studies indicate that more analysis is needed to understand the roles of PPARs. PPARα is a ligand-activated transcription factor that contributes to the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. In this review, we focus on the function and mechanisms of PPARα in the cardiovascular system under various pathological conditions, including vascular and heart injury, blood pressure regulation, and lipid disorder-related cardiovascular injury, as well as its polymorphisms and pharmacogenetic associations with cardiovascular diseases. The anti-inflammatory effect of PPARα in cardiovascular injury is mainly through inhibition of pro-inflammatory signaling pathways and improvement of the lipid profile. Moreover, PPARα also modulates the activity of endothelial nitric oxide synthase and resets the renin-angiotensin system to regulate vascular tone. PPARα gene variants appear to be associated with some cardiovascular risk factors, such as higher plasma lipid levels, cardiac growth, and increased risk of coronary artery disease. Nowadays, novel PPARα drugs with broad safety margins and therapeutic potential for metabolic syndrome and cardiovascular diseases are being developed and applied in the clinical setting. The insights from the current review shed new light on areas of further study and provide a better understanding of the role of PPARα in cardiovascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.