Edited by Dennis R. Voelker Lipid droplets (LDs) are evolutionarily conserved organelles that play critical roles in mammalian lipid storage and metabolism. However, the molecular mechanisms governing the biogenesis and growth of LDs remain poorly understood. Phosphatidic acid (PA) is a precursor of phospholipids and triacylglycerols and substrate of CDP-diacylglycerol (CDP-DAG) synthase 1 (CDS1) and CDS2, which catalyze the formation of CDP-DAG. Here, using siRNAbased gene knockdowns and CRISPR/Cas9-mediated gene knockouts, along with immunological, molecular, and fluorescence microscopy approaches, we examined the role of CDS1 and CDS2 in LD biogenesis and growth. Knockdown of either CDS1 or CDS2 expression resulted in the formation of giant or supersized LDs in cultured mammalian cells. Interestingly, down-regulation of cell death-inducing DFF45-like effector C (CIDEC), encoding a prominent regulator of LD growth in adipocytes, restored LD size in CDS1-but not in CDS2-deficient cells. On the other hand, reducing expression of two enzymes responsible for triacylglycerol synthesis, diacylglycerol O-acyltransferase 2 (DGAT2) and glycerol-3phosphate acyltransferase 4 (GPAT4), rescued the LD phenotype in CDS2-deficient, but not CDS1-deficient, cells. Moreover, CDS2 deficiency, but not CDS1 deficiency, promoted the LD association of DGAT2 and GPAT4 and impaired initial LD maturation. Finally, although both CDS1 and CDS2 appeared to regulate PA levels on the LD surface, CDS2 had a stronger effect. We conclude that CDS1 and CDS2 regulate LD dynamics through distinct mechanisms. Lipid droplets (LDs) 2 are important metabolic organelles, which are used as cellular storage sites for neutral lipids in virtually all organisms, from bacteria to humans (1-5). Nearly all This work was supported by National Health and Medical Research Council of Australia (NHMRC) Project Grants 1141939 and 1144726. The authors declare that they have no conflicts of interest with the contents of this article. This article contains Tables S1-S3 and Figs. S1-S6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.