Two-dimensional graphene oxide (GO) membranes are gaining popularity as a promising means to address global water scarcity. However, current GO membranes fail to sufficiently exclude angstrom-sized ions from solution. Herein, a de novo "posterior" interfacial polymerization (p-IP) strategy is reported to construct a tailor-made polyamide (PA) network in situ in an ultrathin GO membrane to strengthen size exclusion while imparting a positively charged membrane surface to repel metal ions. The electrostatic repulsion toward metal ions, coupled with the reinforced size exclusion, synergistically drives the high-efficiency metal ion separation through the synthesized positively charged GO framework (PC-GOF) membrane. This dual-mechanism-driven PC-GOF membrane exhibits superior metal ion rejection, anti-fouling ability, good operational stability, and ultra-high permeance (five times that of pristine GO membranes), enabling a sound step towards a sustainable water-energy-food nexus.
Osteopontin (OPN) is a key mediator of cell interactions with biomaterials. However, few studies have been dedicated to studying cell adhesion on OPN-adsorbed substrates with controlled charge and wettability. Here, amino-carboxyl (NH/COOH) and hydroxyl-methyl (OH/CH) mixed self-assembled monolayers (SAMs) of varying charges and wettability, respectively, were used as controllable model surfaces to study OPN adsorption and subsequent mesenchymal stem cell (MSC) adhesion. The amount of OPN adsorbed onto the NH/COOH mixed SAMs appeared to monotonically depend on the surface charge, whereas only a moderately hydrophilic surface was conducive to OPN adsorption on OH/CH mixed SAMs. The results correlated well with cell spreading on OPN-coated surfaces in a serum-free medium culture. In addition, the OH/CH mixed SAMs with moderate wettability tended to promote β, β, α and α integrins, indicating that wettability may guide cell adhesion by mediating the integrins signaling pathway. This work will have reference value for designing biologically responsive substrate surfaces.
The compression connector of a cable joint is one of the major components causing joint overheating. This paper proposed a new model to determine the connection resistance of the compression connector. It innovatively integrated electrical contacts model analysis (ECMA) with finite element analysis (FEA) in the modeling. The compacted stranded structure of the cable conductor was taken into account in the proposed model. The streamline distortion effect on the connection resistance was also established. To verify the applicability of the proposed model, the connection resistances of five compression connectors with different cross sections were measured. The modeling results and measurement results were in close agreement with each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.