Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. Herein, we overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. These compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest void volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.
Reported herein is a series of Ru2(Xap)4 capped polyyn-diyl compounds, where Xap is either 2-anilinopyridinate (ap) or its aniline substituted derivatives. Symmetric [Ru2(Xap)4](μ-C4k)[Ru2(Xap)4] (compounds 4ka (X = 3-isobutoxy) and 4kc (X = 3,5-dimethoxy) with k = 2, 3, 4, and 5) was obtained from the Glaser coupling reaction of Ru2(Xap)4(C2kH). Unsymmetric [Ru2(Xap)4](μ-C(4k+2))[Ru2(ap)4] (compounds 4k+2b with k = 2, 3, and 4) were prepared from the Glaser coupling reaction between Ru2(Xap)4(C(2k+2)H) and Ru2(ap)4(C2kH). X-ray diffraction study of compound 12c revealed both the sigmoidal topology of the polyyn-diyl bridge and the fine structural detail about the Ru2 cores. Cyclic and differential pulse voltammetric (CV and DPV) measurements and spectroelectrochemical studies revealed that (i) the reduced monoanions [Ru2-C2m-Ru2](-1) (m = 4-8) belong to the Robin-Day class II mixed valent ions and (ii) the electronic coupling between Ru2 termini depends on the length of the polyyn-diyl bridge with an attenuation constant (γ) between 0.12 and 0.15 Å(-1). In addition, spin-unrestricted DFT calculations provide insight about the nature of orbitals that mediate the long distance electronic coupling.
Two sets of synthetic 21-23mer oligonucleotides with various types of 2'-position modifications have been studied with tandem mass spectrometry using ion trap collision-induced dissociation (IT-CID) and negative electron transfer (NET)-CID. A systematic study has been conducted to define the limitations of IT-CID in sequencing such 2'-chemically modified oligonucleotides. We found that IT-CID is sufficient in characterizing oligonucleotide sequences that do not contain DNA residues, where high sequence coverage can be achieved by performing IT-CID on multiple charge states. However, oligonucleotides containing DNA residues gave limited backbone fragmentation with IT-CID, largely due to dominant fragmentation at the DNA residue sites. To overcome this limitation, we employed the negative electron transfer to strip an electron from the multiply charged oligonucleotide anion. Then, the radical anion species formed in this reaction can fragment via an alternative radical-directed dissociation mechanism. Unlike IT-CID, NET-CID mainly generates a noncomplementary d/w ion series. Furthermore, we found that NET-CID did not show preferential dissociations at the DNA residue sites and thus generated higher sequence coverage for the studied oligonucleotide. Information from NET-CID of different charge states is not fully redundant such that the examination of multiple charge states can lead to more extensive sequence confirmation. This work demonstrates that the NET-CID is a valuable tool to provide high sequence coverage for chemically modified oligonucleotides, and such detailed characterization can serve as an important assay to control the quality of therapeutic oligonucleotides that are produced under the good manufacture practice (GMP) regulations.
Gas-phase dissociation of various 2'-position modified oligonucleotide anions has been studied as a function of precursor ion charge state using ion trap and low energy beam-type collision-induced dissociation (CID). For a completely 2'-O-methyl modified 6-mer, all possible dissociation channels along the phosphodiester linkage, generating complementary (a-B)/w-, b/x-, c/y-, d/z-ion series, were observed with no single dominant type of dissociation pathway. Full sequence information was generated from each charge state via ion trap CID. More sequential fragmentation was noted under beam-type CID conditions. Comparison with model DNA, in which all 2'-OH groups are converted to 2'-H, and RNA anions suggests that the 2'-OMe substitution stabilizes the phosphodiester linkage with respect to fragmentation relative to both DNA and RNA oligomers. For modified mix-mer anions, comprised of DNA nucleotides and 2'-F substituted nucleotides or a mixture of DNA nucleotides and 2'-O-methyl (2'-OMe) and 2'-F substituted nucleotides, 3'-side backbone cleavage was found to be inhibited by the 2'-OMe or 2'-F modification on the nucleotides under ion trap CID conditions. Thus, the sequence information was limited to the a-Base/w-fragments from the cleavage of the 3' C-O bond of the 2'-H (DNA) nucleotides. Under beam-type CID conditions, limited additional cleavage adjacent to 2'-OMe substituted nucleotides was noted but 2'-F modified residues remained resistant to cleavage.
We previously communicated the preparation and characterization of two trans-[Fe(cyclam)(CCR) 2 ]OTf compounds, 2b and 2c (where cyclam = 1,4,8,11-tetraazacyclotetradecane, R = −Si i Pr 3 (2b) or −Ph (2c), and OTf = trifluoromethanesulfonate), which were the first examples of Fe(III) bis-alkynyl complexes. In this work, the series has been expanded to include R = −H (2a), −C 2 SiMe 3 (2d), −C 4 SiMe 3 (2e), and −Fc (2f), which were prepared from the reaction between cis/trans-[Fe(cyclam)(OTf) 2 ]OTf (1) and LiCCR (NaC CH for 2a). Compounds 2a−2f were characterized by spectroscopic/ voltammetric techniques as well as high-resolution mass spectrometry (HR-MS). The trans-orientation of the alkynyl ligands were established from the single-crystal X-ray diffraction studies of 2b−2d. Furthermore, the electronic structures of the model compounds 2a′ + , 2d′ + , and 2e′ + were analyzed with density-functional calculations, which revealed significant dπ−π(CC) interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.