An understanding of the nature of superconductivity in cuprates has been hindered by the apparent diversity of intertwining electronic orders in these materials. Here we combine resonant X-ray scattering (REXS), scanning-tunneling microscopy (STM), and angle-resolved photoemission spectroscopy (ARPES) to observe a charge order that appears consistently in surface and bulk, as well as momentum and real space, with the Bi2Sr2−xLaxCuO 6+δ cuprate family. The observed wavevector rules out simple antinodal nesting in the single particle limit, but matches well with a phenomenological model of a many-body instability of the Fermi arcs. Combined with earlier observations in other cuprate families, these findings suggest the existence of a generic charge-ordered state in underdoped cuprates, and uncover its connection to the pseudogap regime. PACS numbers:Since the discovery of cuprate high-temperature superconductors, several unconventional phenomena have been observed in the region of the phase diagram located between the strongly localized Mott insulator at zero doping and the itinerant Fermi-liquid state that emerges beyond optimal doping [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20]. The so-called 'pseudogap' opens at the temperature T * and obliterates the Fermi surface at the antinodes (AN) of the d-wave superconducting gap function, leaving behind disconnected "Fermi arcs" centered around the nodes. In addition, charge order has been observed on the surface of Bi-and Clbased compounds [4][5][6][7][8], in the bulk of La-based compounds [9][10][11], and most recently in YBa 2 Cu 3 O 6+δ (YBCO) [17][18][19][20], indicating this might be the leading instability in underdoped cuprates. The similarity between the observed charge ordering wavevector and the antinodal nesting vector of the hightemperature Fermi surface has prompted suggestions that a conventional Peierls-like charge-density-wave (CDW) might be responsible for the opening of the pseudogap [7,8,12,19]. We use complementary bulk/surface techniques to examine the validity of this scenario, and explore the connection between charge ordering and fermiology.By applying a suite of complementary tools to a single cuprate material, Bi 2 Sr 2−x La x CuO 6+δ (Bi2201), we reveal that the charge order in this system emerges just below T * , and that its wavevector corresponds to the Fermi arc tips rather than the antinodal nesting vector. We quantify the Fermi surface using ARPES, and we look for charge modulations along the Cu-O bond directions in both real-and reciprocalspace, using STM and REXS. The single-layer Bi2201 is well suited to this purpose owing to: (i) its two-dimensionality and high degree of crystallinity [22,23], and (ii) the possibility of probing the temperature evolution across T * , which is bettercharacterized [15,16] and more accessible than in bilayer sys-
The competition between proximate electronic phases produces a complex phenomenology in strongly correlated systems. In particular, fluctuations associated with periodic charge or spin modulations, known as density waves, may lead to exotic superconductivity in several correlated materials. However, density waves have been difficult to isolate in the presence of chemical disorder, and the suspected causal link between competing density wave orders and high-temperature superconductivity is not understood. Here we used scanning tunneling microscopy to image a previously unknown unidirectional (stripe) charge-density wave (CDW) smoothly interfacing with the familiar tridirectional (triangular) CDW on the surface of the stoichiometric superconductor NbSe 2 . Our low-temperature measurements rule out thermal fluctuations and point to local strain as the tuning parameter for this quantum phase transition. We use this quantum interface to resolve two longstanding debates about the anomalous spectroscopic gap and the role of Fermi surface nesting in the CDW phase of NbSe 2 . Our results highlight the importance of local strain in governing phase transitions and competing phenomena, and suggest a promising direction of inquiry for resolving similarly longstanding debates in cuprate superconductors and other strongly correlated materials.competing order | scanning tunneling spectroscopy | transition metal dichalcogenides W hereas a classical phase transition separates two states of matter at different temperatures, two ordered ground states of a material at zero temperature are separated by a quantum critical point (QCP). The competition between proximate ordered phases near the QCP can dramatically influence a large region of the phase diagram (1). Whereas the fluctuations from competing quantum states lead to exotic physics even at higher temperatures, low-temperature studies of these states may lead to a better understanding of the root of the competition. Density waves-charge-or spin-ordered states of collective origin driven by instabilities of the Fermi surface (FS)-exist in close proximity to superconductivity (SC) in several classes of correlated materials (2-4), and various proposals emerged recently to study their interplay in the presence of strong inhomogeneity in these systems (5). In this light, it is surprising that charge-density waves (CDWs) are not fully understood, even in the weakly correlated and stoichiometric transition metal dichalcogenides (TMDCs). Whereas a classic CDW arises from strong FS nesting, resulting in a sharply peaked susceptibility and a Kohn anomaly at the CDW wavevector, the quasi-2D TMDCs are known to deviate from this picture (6, 7).NbSe 2 is a layered TMDC that has generated much recent interest (8-10) as a model system for understanding the interplay of the CDW and SC phases with onset at T CDW ∼ 33 K and T SC ∼ 7 K respectively (11, 12). Despite extensive study (9, 13-16), several key facts about its familiar tridirectional (3Q) CDW remain unresolved, including the role of FS n...
The unclear relationship between cuprate superconductivity and the pseudogap state remains an impediment to understanding the high transition temperature (T(c)) superconducting mechanism. Here, we used magnetic field-dependent scanning tunneling microscopy to provide phase-sensitive proof that d-wave superconductivity coexists with the pseudogap on the antinodal Fermi surface of an overdoped cuprate. Furthermore, by tracking the hole-doping (p) dependence of the quasi-particle interference pattern within a single bismuth-based cuprate family, we observed a Fermi surface reconstruction slightly below optimal doping, indicating a zero-field quantum phase transition in notable proximity to the maximum superconducting T(c). Surprisingly, this major reorganization of the system's underlying electronic structure has no effect on the smoothly evolving pseudogap.
We study the properties of the strongly-coupled quark-gluon plasma with a multistage model of heavy ion collisions that combines the TRENTo initial condition ansatz, free-streaming, viscous relativistic hydrodynamics, and a relativistic hadronic transport. A model-to-data comparison with Bayesian inference is performed, revisiting assumptions made in previous studies. The role of parameter priors is studied in light of their importance towards the interpretation of results. We emphasize the use of closure tests to perform extensive validation of the analysis workflow before comparison with observations. Our study combines measurements from the Large Hadron Collider and the Relativistic Heavy Ion Collider, achieving a good simultaneous description of a wide range of hadronic observables from both colliders. The selected experimental data provide reasonable constraints on the shear and the bulk viscosities of the quark-gluon plasma at T ∼ 150-250 MeV, but their constraining power degrades at higher temperatures T 250 MeV. Furthermore, these viscosity constraints are found to depend significantly on how viscous corrections are handled in the transition from hydrodynamics to the hadronic transport. Several other model parameters, including the free-streaming time, show similar model sensitivity, while the initial condition parameters associated with the TRENTo ansatz are quite robust against variations of the particlization prescription. We also report on the sensitivity of individual observables to the various model parameters. Finally, Bayesian model selection is used to quantitatively compare the agreement with measurements for different sets of model assumptions, including different particlization models and different choices for which parameters are allowed to vary between RHIC and LHC energies. CONTENTS Pratt-Torrieri-Bernhard 10 D. Hadronic transport 11 IV. Specifying prior knowledge 11 V. Bayesian Parameter Estimation with a Statistical Emulator 13 A. Overview of Bayesian Parameter Estimation 13 B. Physical model emulator 14 C. Treatment of uncertainties 16 D. Sampling of the posterior 17 E. Maximizing the posterior 17 VI. Closure Tests 17 A. Validating Bayesian inference with closure tests 18 B. Guiding analyses with closure tests 18 37 A. Full posterior of model parameters 37 B. Posterior for LHC and RHIC independently 37 C. Validation of principal component analysis 37 D. Experimental covariance matrix 38 E. Reducing experimental uncertainty 39 F. Bulk relaxation time 39 G. Comparison to previous studies 40 1. Physics models 41 2. Prior distributions 42 3. Experimental data 42 H. Multistage model validation 42 1. Validation of second-order viscous hydrodynamics implementation 42 a. Validation against cylindrically symmetric external solution 43 2. SMASH 43 3. Comparison of JETSCAPE with hic-eventgen 45 4. The σ meson 46 5. Sampling particles on mass-shell 47 6. QCD equations of state with different hadron resonance gases 47 References 48
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.