Nitric oxide (NO) is extensively involved in various growth processes and stress responses in plants; however, the regulatory mechanism of NO-modulated cellular sugar metabolism is still largely unknown. Here, we report that NO significantly inhibited monosaccharide catabolism by modulating sugar metabolic enzymes through S-nitrosylation (mainly by oxidizing dihydrolipoamide, a cofactor of pyruvate dehydrogenase). These S-nitrosylation modifications led to a decrease in cellular glycolysis enzymes and ATP synthase activities as well as declines in the content of acetyl coenzyme A, ATP, ADP-glucose and UDP-glucose, which eventually caused polysaccharide-biosynthesis inhibition and monosaccharide accumulation. Plant developmental defects that were caused by high levels of NO included delayed flowering time, retarded root growth and reduced starch granule formation. These phenotypic defects could be mediated by sucrose supplementation, suggesting an essential role of NO-sugar cross-talks in plant growth and development. Our findings suggest that molecular manipulations could be used to improve fruit and vegetable sweetness.
CO2 and other chemicals affect mosquito blood meal seeking behavior. Heat, humidity and black color can also serve as orientation cues. However mosquito attraction does not necessarily mean that it will land. The sequence of the cues used for mosquito landing is unclear. We performed a field study with wild mosquitoes in an open space and found that no chemicals (except pyrethrins) could completely prevent mosquitoes from landing. CO2 mimics cyclopentanone and pyridine attracted mosquitoes but did not lead to landing. No mosquito was caught in the absence of heat, although in the presence of CO2. Mosquito females commonly explore visible black objects by eyes, which is independent of infrared radiation. Humidification around the heat source may increase the detection distance but it did not affect mosquito landing. If a black object was located distant from the CO2 and heat, mosquitoes still explored the heat source. Relative to CO2 and heat, odorants, humidity and black color show lesser effects on mosquito landing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.