Identification of new drug–target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate these drawbacks, researchers have sought to identify DTIs using computational approaches. However, most existing methods construct drug networks and target networks separately, and then predict novel DTIs based on known associations between the drugs and targets without accounting for associations between drug–protein pairs (DPPs). To incorporate the associations between DPPs into DTI modeling, we built a DPP network based on multiple drugs and proteins in which DPPs are the nodes and the associations between DPPs are the edges of the network. We then propose a novel learning-based framework, ‘graph convolutional network (GCN)-DTI’, for DTI identification. The model first uses a graph convolutional network to learn the features for each DPP. Second, using the feature representation as an input, it uses a deep neural network to predict the final label. The results of our analysis show that the proposed framework outperforms some state-of-the-art approaches by a large margin.
Non-destructive plant growth measurement is essential for plant growth and health research. As a 3D sensor, Kinect v2 has huge potentials in agriculture applications, benefited from its low price and strong robustness. The paper proposes a Kinect-based automatic system for non-destructive growth measurement of leafy vegetables. The system used a turntable to acquire multi-view point clouds of the measured plant. Then a series of suitable algorithms were applied to obtain a fine 3D reconstruction for the plant, while measuring the key growth parameters including relative/absolute height, total/projected leaf area and volume. In experiment, 63 pots of lettuce in different growth stages were measured. The result shows that the Kinect-measured height and projected area have fine linear relationship with reference measurements. While the measured total area and volume both follow power law distributions with reference data. All these data have shown good fitting goodness (R2 = 0.9457–0.9914). In the study of biomass correlations, the Kinect-measured volume was found to have a good power law relationship (R2 = 0.9281) with fresh weight. In addition, the system practicality was validated by performance and robustness analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.