Effective recovery of phosphorus from municipal wastewater could be one of the best practical alternatives to protect aquatic environments from eutrophication and save natural phosphorus resources. This paper focuses on validating magnesium carbonate (MgCO 3 )-based pellets combined with a bench-scale anoxic/aerobic membrane bioreactor (MBR) system for advanced phosphorus recovery from municipal wastewater. As the flow rate of wastewater into the MgCO 3 column decreased from 10 L/d to 2.5 L/d, the phosphorus recovery rate of the MgCO 3 -based pellets increased from 54.3 to 93.5%. However, the column's severe clogging was found after a 13-days operation due to the high removal of total suspended solids (TSS) (∼82%) through the MgCO 3 column. The anoxic/aerobic MBR introduction provided efficient removal of TSS, organic matter, and ammonia nitrogen before the MgCO 3 column. The combination of MBR with the MgCO 3 column achieved 73.1% phosphorus recovery from municipal wastewater without physical clogging. The P recovery capacity of the MgCO 3 -based pellets was maintained at 0.47 mg ortho-P/g MgCO 3 -based pellet during the continuous operation. Physical and chemical properties of MgCO 3 -based pellets before and after the experiment were characterized using scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Brunauer−Emmett−Teller (BET) surface area analyzer.
Various kinds of micro organic pollutants have frequently been detected from a water system. Therefore, it is considered to be very important part in the drinking water treatment system. And the research about removal process and processing efficiency have been being conducted briskly. In this study, the removal efficiency was evaluated using advanced water treatment process and nanofiltration process. The removal efficiency of nanofiltration process was very different according to physical and chemical characteristics of materials. The molecular weight of cutoff was the most influential factor in the removal efficiency. And when pKa value was higher than pH of raw water or Log Kow value was below 2, the removal efficiency of material was decreased. In case of oxidation reaction, the bigger the molecular weight of material was and the more hydrophobic a material was, the less oxidation reaction occurred. And the removal efficiency was decreased. Most unoxidized materials were removed by absorption. And the more actively oxidation reaction occurred by H2O2, the more absorption reaction increased. 요약 : 수계에서 검출되는 미량유해물질의 빈도와 종류가 다양해지고 있다. 따라서 정수처리시스템에서 고려되어야 할 부분 으로 거론되고 있으며 제거공정과 처리효율에 대한 연구가 활발하게 진행되고 있다. 본 연구에서는 고도처리공정과 나노여 과공정을 이용한 제거효율을 평가하였다. 나노여과공정의 경우 물질의 물리화학적 특성에 따라 제거율이 상이하게 나타났 다. 물질의 분획분자량이 제거율이 가장 큰 영향을 미치는 것으로 확인되었다. 또한, 원수의 pH보다 높은 pKa 값을 갖거나 Log Kow 값이 2 이하인 물질의 제거효율이 감소되었다. 고도처리공정 중 산화공정에서는 대상물질의 분자량이 클수록 그리 고 소수성을 띌수록 산화반응에 의한 제거효율이 감소되었다. 흡착공정에서는 산화되지 않은 대부분의 물질이 제거되었으며 H2O2에 의하여 산화가 더 잘 진행될수록 흡착반응이 향상되었다. 주제어 : 고도처리, 나노여과, 미량유해물질, 오존, 입상활성탄 1. 서 론 급속하게 진행 중인 도시화와 산업화에 따라 상수원으로 유입되는 유해 오염물질들이 다양화되고 그 양도 증가하고 있는 추세이다. 전 세계적으로 취수원수로 사용되고 있는 지표수 중에서 내분비계교란물질(endocrine disrupting compounds, EDCs), 의약물질(pharmaceuticals and personal care products, PhACs), 신규우려물질(contaminants of emerging concerns, CECs), 개인관리용품(personal care products, PCPs) 과 같은 미량유해물질의 검출이 보고되고 있으며 물질에 대한 규제 또한 강화되는 추세이다. 미량유해물질은 ug/L, ng/L 단위의 미량으로도 인체에 위해를 가할 수 있는 물질 로 차세대 정수처리 시스템에서 반드시 고려되어야 할 부 분들이다. 응집/침전/모래여과와 같은 기존 정수처리공정, 오존/활성탄과 같은 고도처리시스템 및 막여과 공정(정밀 여과/한외여과)에서의 제거율 및 제거 메카니즘에 조사가 필 요한 실정이다. 농약류, 합성세제, 색도 유발물질, 의약물질 및 내분비계 장애물질 등의 난분해성 오염물질은 염소나 오존을 이용해 서 효과적으로 산화 제거하기에는 한계가 있으며 1,2) 산화효 율 증진을 위해 과다한 염소의 투입은 트리할로메탄과 같 은 소독부산물을 과다하게 생성시키며 과다한 오존투입의 경우도 비경제적이다. 또한, 의약물질은 특정한 생리작용을 유지하기 위해 물에 잘 용해되지만 생분해가 잘 일어나지 않고 화학적으로 안정적이기 때문에 기존의 정수처리공정 만으로는 제거하기가 힘들다. 다양한 물리화학적 성질을 가 지는 의약물질들을 원수에 주입한 후 응집과 활성탄 흡착, 오존처리를 통해서 제거를 하였을 경우, 응집과 활성탄 흡 착으로는 산성의약물질들의 제거율이 현저히 낮고 오존에 의해서도 일부 의약물질은 분해가 잘되지 않는 것으로 보 고된 바 있다. 3,4) 일반적으로 나노여과 공정에서 미량유해물질의 제거효율 은 M.W (Molecular weight), log Kow, Dipole moment, Structure 등에 따라 다르게 나타난다. 분자량이 큰 것이 일 반적으로 제거효율이 증가되지만 결합된 구조에 따라 제거 효율이 다르게 나타날 수 있다. 또한, 물질이 소수성을 띌수
Municipal wastewater has been identified as a potential source of natural phosphorus (P) that is projected to become depleted in a few decades based on current exploitation rates. This paper focuses on combining a bench-scale anaerobic/anoxic/aerobic membrane bioreactor (MBR) and magnesium carbonate (MgCO3)-based pellets to effectively recover P from municipal wastewater. Ethanol was introduced into the anoxic zone of the MBR system as an external carbon source to improve P release via the enhanced biological phosphorus removal (EBPR) mechanism, making it available for adsorption by the continuous-flow MgCO3 pellet column. An increase in the concentration of P in the MBR effluent led to an increase in the P adsorption capacity of the MgCO3 pellets. As a result, the anaerobic/anoxic/aerobic MBR system, combined with a MgCO3 pellet column and ethanol, achieved 91.6% P recovery from municipal wastewater, resulting in a maximum P adsorption capacity of 12.8 mg P/g MgCO3 through the continuous-flow MgCO3 pellet column. Although the introduction of ethanol into the anoxic zone was instrumental in releasing P through the EBPR, it could potentially increase membrane fouling by increasing the concentration of extracellular polymeric substances (EPSs) in the anoxic zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.