Optical lattice clocks with extremely stable frequency are possible when many atoms are interrogated simultaneously, but this precision may come at the cost of systematic inaccuracy resulting from atomic interactions. Density-dependent frequency shifts can occur even in a clock that uses fermionic atoms if they are subject to inhomogeneous optical excitation. However, sufficiently strong interactions can suppress collisional shifts in lattice sites containing more than one atom. We demonstrated the effectiveness of this approach with a strontium lattice clock by reducing both the collisional frequency shift and its uncertainty to the level of 10(-17). This result eliminates the compromise between precision and accuracy in a many-particle system; both will continue to improve as the number of particles increases.
An optical lattice clock based on 87 Sr is built at National Institute of Metrology (NIM) of China. The systematic frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10 −16 . To measure its absolute frequency with respect to NIM's cesium fountain clock NIM5, the frequency of a flywheel H-maser of NIM5 is transferred to the Sr laboratory through a 50-km-long fiber. A fiber optical frequency comb, phase-locked to the reference frequency of this H-maser, is used for the optical frequency measurement. The absolute frequency of this Sr clock is measured to be 429228004229873.7(1.4) Hz.
We describe recent experimental progress with the JILA Sr optical frequency standard, which has a systematic uncertainty at the 10-(16) fractional frequency level. An upgraded laser system has recently been constructed in our lab which may allow the JILA Sr standard to reach the standard quantum measurement limit and achieve record levels of stability. To take full advantage of these improvements, it will be necessary to operate a lattice clock with a large number of atoms, and systematic frequency shifts resulting from atomic interactions will become increasingly important. We discuss how collisional frequency shifts can arise in an optical lattice clock employing fermionic atoms and describe a novel method by which such systematic effects can be suppressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.