Recently it is very important to control robot hands more compact and integrated sensors in order to increase compensate the grasping capability and to reduce cabling through the fmger in the manipulator. As a matter of fact, the miniaturization and cabling harness represents a significant limitation to the design of small sized precise sensor. The main focus of this research is on a flexible grasping control of hand fingers, which consists of a flexible multi-fingered hand-arm system.
We present a new technology for real-time walking of a biped robot. A biped robot necessitates achieving stabilization for real time walking since it has basic problems such as structural stability. In this paper, a robust control algorithm for stable walking is proposed based the ground reaction forces, which are measured using force sensors during walking, and the environmental conditions are estimated from these situation. From this information the robot selects the proper motion and overcomes ground irregularities effectively. In order to generate the proper angel of the joint. The performance of the proposed algorithm is verified by simulation and experiments for a 20-DOFs humanoid robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.