2-Chloro-10-[3(-dimethylamino)propyl]phenothiazine mono hydrochloride (chlorpromazine; CPZ) is an antipsychotic agent that was originally developed to control psychotic disorders. The cytotoxic properties of the CPZ are well known, but its mechanism of action is poorly understood. In this study, we investigated the role of apoptosis and autophagy in CPZ-induced cytotoxicity in U-87MG glioma cells. CPZ treatment inhibited cell proliferation and long-term clonogenic survival. Additionally, CPZ triggered autophagy, as indicated by electron microscopy and accumulation of the membrane form of microtubule-associated protein 1 light chain 3 (LC3-II); however, CPZ did not induce apoptosis. Inhibition of autophagy by expression of Beclin 1 small interfering RNA (siRNA) in U-87MG cells attenuated CPZ-induced LC3-II formation. Furthermore, U-87MG cells expressing Beclin 1 siRNA attenuated CPZ-induced cell death. CPZ inhibited phosphatidylinositol 3-kinase (PI3K)/AKT/ mTOR pathway in U-87MG cells. Treatment with LY294002, a PI3K inhibitor, alone increased the accumulation of LC3-II and potentiated the effect of CPZ. In contrast, exogenous expression of AKT partially inhibited CPZ-induced LC3-II formation. When U-87MG cells were implanted into the brain of athymic nude mouse, CPZ triggered autophagy and inhibited xenograft tumor growth. These results provided the first evidence that CPZ-induced cytotoxicity is mediated through autophagic cell death in PTEN (phosphatase and tensin homolog deleted on chromosome 10)-null U-87MG glioma cells by inhibiting PI3K/AKT/mTOR pathway.
The anticancer effects of N-(4-hydroxyphenyl)-retinamide (4HPR), a potential chemopreventive or chemotherapeutic retinamide, are thought to be derived from its ability to induce apoptosis. However, the mechanism of apoptosis induced by 4HPR remains unclear. Thus, this study was designed to identify the gene (
Liver cancer stem cells (CSCs) are resistant to conventional chemotherapy and radiation, which may destroy tumor masses, but not all liver CSCs contribute to tumor initiation, metastasis, and relapse. In the present study, we showed that liver CSCs with elevated Wnt/β-catenin signaling possess much greater self-renewal and clonogenic potential. We further documented that the increased clonogenic potential of liver CSCs is highly associated with changes in Wnt/β-catenin signaling and that Wnt/β-catenin signaling activity is positively correlated with CD133 expression and aldehyde dehydrogenase (ALDH) enzymatic activity. Notably, the small molecule inhibitor CWP232228, which antagonizes the binding of β-catenin to TCF in the nucleus, inhibits Wnt/β-catenin signaling and depletes CD133+/ALDH+ liver CSCs, thus ultimately diminishing the self-renewal capacity of CSCs and decreasing tumorigenicity in vitro and in vivo. Taken together, our findings suggest that CWP232228 acts as a candidate therapeutic agent for liver cancer by preferentially targeting liver CSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.