In the continuous-casting process, mold-level control is one of the most important factors that ensures the quality of high-efficiency continuous casting slabs. In traditional mold-level prediction control, the mold-level prediction accuracy is low, and the calculation cost is high. In order to improve the prediction accuracy for mold-level prediction, an adaptive hybrid prediction algorithm is proposed. This new algorithm is the combination of empirical mode decomposition (EMD), variational mode decomposition (VMD), and support vector regression (SVR), and it effectively overcomes the impact of noise on the original signal. Firstly, the intrinsic mode functions (IMFs) of the mold-level signal are obtained by the adaptive EMD, and the key parameter of the VMD is obtained by the correlation analysis between the IMFs. VMD is performed based on the key parameter to obtain several IMFs, and the noise IMFs are denoised by wavelet threshold denoising (WTD). Then, SVR is used to predict each denoised component to obtain the predicted IMF. Finally, the predicted mold-level signal is reconstructed by the predicted IMFs. In addition, compared with WTD–SVR and EMD–SVR, VMD–SVR has a competitive advantage against the above three methods in terms of robustness. This new method provides a new idea for mold-level prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.