This study examines the role of oxalic acid in the uptake of Cd and participation in detoxification process in Phanerochaete chrysosporium. Cd-induced oxalic acid secretion was observed with growth inhibition and enzyme inactivation (LiP and MnP) of P. chrysosporium. The peak value of oxalic acid concentration was 16.6 mM at initial Cd concentration of 100 mg L(-1). During the short-term uptake experiments, the uptake of Cd was enhanced and accelerated in the presence of oxalic acid and resulted in alleviated growth and enzyme inhibition ratios. The formation of a metal-oxalate complex therefore may provide a detoxification mechanism via effect on metal bioavailability, whereby many fungi can survive and grow in environments containing high concentrations of toxic metals. The present findings will advance the understanding of fungal resistance to metal stress, which could show promise for a more useful application of microbial technology in the treatment of metal-polluted waste.
Entangled states with high-dimensional systems have been investigated widely because of its various advantages. This paper investigates the effect of the weak measurement and reversal (WMR) on the protection of the entanglement for an arbitrarily entangled qutrit-qutrit state from the amplitude-phase decoherence sources. By solving the master equation of the qutrit-qutrit system, we numerically get the maximal amount of entanglement. The numerical results show explicitly that the WMR operation indeed helps for protecting entanglement from amplitude-phase decoherence. In particular, WMR can protect entanglement more efficiently in the case of strong decay rates than those with small decay rates. These results shed new light on the protection of high-dimensional quantum entanglement in a complex quantum environment.
Crosstalk phenomena taking place between synapses can influence signal transmission and, in some cases, brain functions. It is thus important to discover the dynamic behaviors of the neural network infected by synaptic crosstalk. To achieve this, in this paper, a new circuit is structured to emulate the Coupled Hyperbolic Memristors, which is then utilized to simulate the synaptic crosstalk of a Hopfield Neural Network (HNN). Thereafter, the HNN’s multi-stability, asymmetry attractors, and anti-monotonicity are observed with various crosstalk strengths. The dynamic behaviors of the HNN are presented using bifurcation diagrams, dynamic maps, and Lyapunov exponent spectrums, considering different levels of crosstalk strengths. Simulation results also reveal that different crosstalk strengths can lead to wide-ranging nonlinear behaviors in the HNN systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.