Differential phase shift keying (DPSK) modulation and multi-aperture receiving are effective means for suppressing flickering, deviation, and fragmentation of the light spot by atmospheric turbulence. What is challenging in coherent beam combination of such an array receiver system is to detect and compensate for phase deviation of sub-apertures. In this paper, a method of phase alignment of an array optical telescope system using balanced detection was proposed and demonstrated. The improved Mach Zehnder Interferometer (MZI) can demodulate the digital signal and recover the phase difference at the same time. It also brings a 3 dB gain to the receiver and improves the detection sensitivity of the system. Adequate simulations with OptiSystem and MATLAB were carried out to show that the power value remains near the ideal state of 2.75 mW, and the bit error rate is less than 10−9 after phase compensation, which indicates the effectiveness and accuracy of the proposed method. Furthermore, taking the communication interruption difference of ninety degrees as an example, the system bit error rate was reduced from 1 to 10−35, and communication was established again.
At present, the majority of sparse-aperture telescopes (SATs) are unable to observe moving targets. In this paper, we describe the construction of and present the results obtained using a Fizeau directly-imaging sparse-aperture telescope (FDISAT) that permits pointing and the tracking of moving targets. The telescope comprises three sub-apertures, each of which is equipped with a Risley prism system that permits a maximum tracking range of 5° and has independent boresight adjustment capability. On targets in various positions, experiments with pointing and tracking are conducted. The maximum root-mean-square error (RMSE) of pointing in the sub-apertures was found to be 8.22 arcsec. When considering a target moving at 0.01°/s for approximately 320 s, the maximum RMSE of tracking in the sub-apertures was found to be 4.23 arcsec. The images obtained from the focal plane detector exhibit clear interference fringes while tracking. The experimental results demonstrate that the system can effectively track moving targets, providing a method for SAT observation of moving targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.