Summary A central goal of genetics is to understand the links between genetic variation and disease. Intuitively, one might expect disease-causing variants to cluster into key pathways that drive disease etiology. But for complex traits, association signals tend to be spread across most of the genome–including near many genes without an obvious connection to disease. We propose that gene regulatory networks are sufficiently interconnected that all genes expressed in disease-relevant cells are liable to affect the functions of core disease-related genes and that most heritability can be explained by effects on genes outside core pathways. We refer to this hypothesis as an “omnigenic” model.
Identifying the downstream effects of disease-associated single nucleotide polymorphisms (SNPs) is challenging: the causal gene is often unknown or it is unclear how the SNP affects the causal gene, making it difficult to design experiments that reveal functional consequences. To help overcome this problem, we performed the largest expression quantitative trait locus (eQTL) meta-analysis so far reported in non-transformed peripheral blood samples of 5,311 individuals, with replication in 2,775 individuals. We identified and replicated trans-eQTLs for 233 SNPs (reflecting 103 independent loci) that were previously associated with complex traits at genome-wide significance. Although we did not study specific patient cohorts, we identified trait-associated SNPs that affect multiple trans-genes that are known to be markedly altered in patients: for example, systemic lupus erythematosus (SLE) SNP rs49170141 altered C1QB and five type 1 interferon response genes, both hallmarks of SLE2-4. Subsequent ChIP-seq data analysis on these trans-genes implicated transcription factor IKZF1 as the causal gene at this locus, with DeepSAGE RNA-sequencing revealing that rs4917014 strongly alters 3’ UTR levels of IKZF1. Variants associated with cholesterol metabolism and type 1 diabetes showed similar phenomena, indicating that large-scale eQTL mapping provides insight into the downstream effects of many trait-associated variants.
psychological protection of the mental health of medical workers has been initiated in China. The experiences from this public health emergency should inform the efficiency and quality of future crisis intervention of the Chinese Government and authorities around the world.
Graphical AbstractHighlights d SpliceAI, a 32-layer deep neural network, predicts splicing from a pre-mRNA sequence d 75% of predicted cryptic splice variants validate on RNA-seq d Cryptic splicing may yield 10% of pathogenic variants in neurodevelopmental disorders d Cryptic splice variants frequently give rise to alternative splicing A deep neural network precisely models mRNA splicing from a genomic sequence and accurately predicts noncoding cryptic splice mutations in patients with rare genetic diseases. SUMMARYThe splicing of pre-mRNAs into mature transcripts is remarkable for its precision, but the mechanisms by which the cellular machinery achieves such specificity are incompletely understood. Here, we describe a deep neural network that accurately predicts splice junctions from an arbitrary pre-mRNA transcript sequence, enabling precise prediction of noncoding genetic variants that cause cryptic splicing. Synonymous and intronic mutations with predicted splice-altering consequence validate at a high rate on RNA-seq and are strongly deleterious in the human population. De novo mutations with predicted splice-altering consequence are significantly enriched in patients with autism and intellectual disability compared to healthy controls and validate against RNA-seq in 21 out of 28 of these patients. We estimate that 9%-11% of pathogenic mutations in patients with rare genetic disorders are caused by this previously underappreciated class of disease variation.(legend continued on next page) (F) Relationship between exon-intron length and the strength of the adjoining splice sites, as predicted by SpliceAI-80 nt (local motif score) and SpliceAI-10k. The genome-wide distributions of exon length (yellow) and intron length (pink) are shown in the background. The x axis is in log-scale. (G) A pair of splice acceptor and donor motifs, placed 150 nt apart, are walked along the HMGCR gene. Shown are, at each position, K562 nucleosome signal and the likelihood of the pair forming an exon at that position, as predicted by SpliceAI-10k. The genome-wide Spearman correlation between the two tracks is shown. (H) Average K562 and GM12878 nucleosome signal near private mutations that are predicted by the SpliceAI-10k model to create novel exons in the GTEx cohort.
The JUNO experiment locates in Jinji town, Kaiping city, Jiangmen city, Guangdong province. The geographic location is east longitude 112 • 31'05' and North latitude 22 • 07'05'. The experimental site is 43 km to the southwest of the Kaiping city, a county-level city in the prefecture-level city Jiangmen in Guangdong province. There are five big cities, Guangzhou, Hong Kong, Macau, Shenzhen, and Zhuhai, all in ∼200 km drive distance, as shown in figure 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.