Various electronic devices are increasingly being connected to the Internet. Meanwhile, security problems, such as fake silicon chips, still exist. The significance of verifying the authenticity of these devices has led to the proposal of side-channel authentication. Side-channel authentication is a promising technique for enriching digital authentication schemes. Motivated by the fact that each cryptographic device leaks side-channel information depending on its used secret keys, cryptographic devices with different keys can be distinguished by analyzing the side-channel information leaked during their calculation. Based on the original side-channel authentication scheme, this paper adapts an ID-based authentication scheme that can significantly increase the authentication speed compared to conventional schemes. A comprehensive study is also conducted on the proposed ID-based side-channel authentication scheme. The performance of the proposed authentication scheme is evaluated in terms of speed and accuracy based on an FPGA-based AES implementation. With the proposed scheme, our experimental setup can verify the authenticity of a prover among 2 70 different provers within 0.59 s; this could not be handled effectively using previous schemes.
Differential Fault Analysis (DFA) is one of the most practical methods to recover the secret keys from real cryptographic devices. In particular, DFA on Advanced Encryption Standard (AES) has been massively researched for many years for both single-byte and multibyte fault model. For AES, the first proposed DFA attack requires 6 pairs of ciphertexts to identify the secret key under multibyte fault model. Until now, the most efficient DFA under multibyte fault model proposed in 2017 can complete most of the attacks within 3 pairs of ciphertexts. However, we note that the attack is not fully optimized since no clear optimization goal was set. In this work, we introduce two optimization goals as the fewest ciphertext pairs and the least computational complexity. For these goals, we manage to figure out the corresponding optimized key recovery strategies, which further increase the efficiency of DFA attacks on AES. A more accurate security assessment of AES can be completed based on our study of DFA attacks on AES. Considering the variations of fault distribution, the improvement to the attack has been analyzed and verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.