Early childhood caries in children living in Xiamen city was strongly associated with eating habits, family- and childcare-related factors and tooth-brushing. The ECC-high-risk group is children in rural private childcare facilities.
Vascular endothelial growth factor receptors (VEGFRs) are a family of receptor protein tyrosine kinases that play an important role in the regulation of tumor-induced angiogenesis. Currently, VEGFR inhibitors have been widely used in the treatment of various tumors. However, current VEGFR inhibitors are limited to a certain extent due to limited clinical efficacy and potential toxicity, which hinder their clinical application. Thus, the development of new strategies to improve the clinical outcomes and minimize the toxic effects of VEGFR inhibitors is required. Given the synergistic effect of VEGFR and other therapies in tumor development and progression, VEGFR dual-target inhibitors are becoming an attractive approach due to their favorable pharmacodynamics, low toxicity, and anti-resistant effects. This perspective provides an overview of the development of VEGFR dual-target inhibitors from multiple aspects, including rational target combinations, drug discovery strategies, structure–activity relationships and future directions.
A new strategy combining a pore-free matrix and cooperative chelating was proposed in the present paper in order to effectively avoid undesired nonselective physical adsorption and intraparticle diffusion caused by pores and voids in porous sorbents, and to greatly enhance uranium-chelating capability based on hyperbranched amidoxime ligands on the surface of nanodiamond particles. Thus, a pore-free, amidoxime-terminated hyperbranched nanodiamond (ND-AO) was designed and synthesized. The experimental results demonstrate that the strategy endows the as-synthesized ND-AO with the following expected features: (1) distinctively high uranium selectivity (S = q-U/q-tol × 100%) from over 80% to nearly 100% over the whole weak acidity range (pH < 4.5); especially, the S can reach up to unprecedented >91% at pH 4.5, more than 20% of selectivity increment over any analogous sorbent materials reported so far, with a uranium sorption capacity of 121 mg/g in simulated nuclear industry effluent samples containing 12 coexistent nuclide ions; (2) superfast equilibrium sorption time of <30 s; and (3) one of the highest distribution coefficients (K) of ∼3 × 10 mL/g for U(VI) as well as a fairly high sorption capacity of 212 mg/g at pH 4.5 in pure uranium solution. The strategy could also provide an optional approach for the design and fabrication of other new high-performance sorbing materials with prospective applications in selective separation of other interested metal ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.