In addition to beta-sitosterol and alpha-amyrin detected in all the investigated species, the extract of the aerial parts of Artemisia giraldii var. giraldii gave stigmasterol, daucosterol, sesamine, luteolin, eupafolin, hispidulin, eupatilin, belamcanidin, pinitol, artemin, ridentin, and a new antifungal monoterpene (named santolinylol) while that of the aerial parts of A. mongolica afforded sesamine, eupafolin, eupatilin, matricarin, and a new germacranolide (3-oxo-11 alpha H-germacra-1(10)E,4Z-dien-12,6 alpha-olide), and that of the aerial parts of A. vestita yielded stigmasterol, daucosterol, umbelliferone, scopolin, scoparone, and isoscopoletin-O-glucoside. Pinitol, first reisolated from Artemisia genus, was shown to inhibit the growth of the human pathogenic fungi Candida albicans, Aspergillus flavus, A. niger, Geotrichun candidum, Trichophyton rubrum, and Epidermophyton floccosum. Umbelliferone was also active against Candida tropicalis, A. flavus, G. candidum, T. rubrum, and E. floccosum. The flavones hispidulin and belamcanidin were almost equally inhibitory to the growth of A. flavus, G. candidum, T. rubrum, and E. floccosum, and santolinylol to C. albicans, A. flavus, A. niger, G. candidum, T. rubrum, and E. floccosum. In addition, ridentin was active against the growth of the plant pathogenic fungus Cladosporium cucumerinum.