Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DR hi CD11c hi inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DR lo monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.
Effective strategy to mitigate the ongoing pandemic of 2019 novel coronavirus (COVID-19) require a comprehensive understanding of humoral responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the emerging virus causing COVID-19. The dynamic profile of viral replication and shedding along with viral antigen specific antibody responses among COVID-19 patients started to be reported but there is no consensus on their patterns. Here, we conducted a serial investigation on 21 individuals infected with SARS-CoV-2 in two medical centres from Jiangsu Province, including 11 non-severe COVID-19 patients, and 5 severe COVID-19 patients and 5 asymptomatic carriers based on nucleic acid test and clinical symptoms. The longitudinal swab samples and sera were collected from these people for viral RNA testing and antibody responses, respectively. Our data revealed different pattern of seroconversion among these groups. All 11 non-severe COVID-19 patients and 5 severe COVID-19 patients were seroconverted during hospitalization or follow-up period, suggesting that serological testing is a complementary assay to nucleic acid test for those symptomatic COVID-19 patients. Of note, immediate antibody responses were identified among severe cases, compared to non-severe cases. On the other hand, only one were seroconverted for asymptomatic carriers. The SARS-CoV-2 specific antibody responses were well-maintained during the observation period. Such information is of immediate relevance and would assist COVID-19 clinical diagnosis, prognosis and vaccine design.
Highlights d A linear epitope landscape of the SARS-CoV-2 Spike from 1,051 COVID-19 patients d Responsive epitopes are highly variable among patients and correlate with severity d The RBD lacks linear epitopes, but two other regions are rich in linear epitopes d Little neutralization activity is observed for the linear-epitopeelicited antibodies
Atopic dermatitis is a chronic, relapsing form of inflammatory skin disorder that is affected by genetic and environmental factors. We performed a genome-wide association study of atopic dermatitis in a Chinese Han population using 1,012 affected individuals (cases) and 1,362 controls followed by a replication study in an additional 3,624 cases and 12,197 controls of Chinese Han ethnicity, as well as 1,806 cases and 3,256 controls from Germany. We identified previously undescribed susceptibility loci at 5q22.1 (TMEM232 and SLC25A46, rs7701890, P(combined) = 3.15 × 10(-9), odds ratio (OR) = 1.24) and 20q13.33 (TNFRSF6B and ZGPAT, rs6010620, P(combined) = 3.0 × 10(-8), OR = 1.17) and replicated another previously reported locus at 1q21.3 (FLG, rs3126085, P(combined) = 5.90 × 10(-12), OR = 0.82) in the Chinese sample. The 20q13.33 locus also showed evidence for association in the German sample (rs6010620, P = 2.87 × 10(-5), OR = 1.25). Our study identifies new genetic susceptibility factors and suggests previously unidentified biological pathways in atopic dermatitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.