Micro-expressions (MEs) are involuntary facial movements revealing people's hidden feelings in high-stake situations and have practical importance in various fields. Early methods for Micro-expression Recognition (MER) are mainly based on traditional features. Recently, with the success of Deep Learning (DL) in various tasks, neural networks have received increasing interest in MER. Different from macro-expressions, MEs are spontaneous, subtle, and rapid facial movements, leading to difficult data collection and annotation, thus publicly available datasets are usually small-scale. Currently, various DL approaches have been proposed to solve the ME issues and improve MER performance. In this survey, we provide a comprehensive review of deep MER and define a new taxonomy for the field encompassing all aspects of MER based on DL, including datasets, each step of the deep MER pipeline, and performance comparisons of the most influential methods. The basic approaches and advanced developments are summarized and discussed for each aspect. Additionally, we conclude the remaining challenges and potential directions for the design of robust MER systems. Finally, ethical considerations in MER are discussed. To the best of our knowledge, this is the first survey of deep MER methods, and this survey can serve as a reference point for future MER research.
As one of the most important affective signals, facial affect analysis (FAA) is essential for developing human-computer interaction systems. Early methods focus on extracting appearance and geometry features associated with human affects while ignoring the latent semantic information among individual facial changes, leading to limited performance and generalization. Recent work attempts to establish a graph-based representation to model these semantic relationships and develop frameworks to leverage them for various FAA tasks. This paper provides a comprehensive review of graph-based FAA, including the evolution of algorithms and their applications. First, the FAA background knowledge is introduced, especially on the role of the graph. We then discuss approaches widely used for graph-based affective representation in literature and show a trend towards graph construction. For the relational reasoning in graph-based FAA, existing studies are categorized according to their non-deep or deep learning methods, emphasizing the latest graph neural networks. Performance comparisons of the state-of-the-art graph-based FAA methods are also summarized. Finally, we discuss the challenges and potential directions. As far as we know, this is the first survey of graph-based FAA methods. Our findings can serve as a reference for future research in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.