Mechanisms for the formation of crust on planetary bodies remain poorly understood. It is generally accepted that Earth's andesitic continental crust is the product of plate tectonics, whereas the Moon acquired its feldspar-rich crust by way of plagioclase flotation in a magma ocean. Basaltic meteorites provide evidence that, like the terrestrial planets, some asteroids generated crust and underwent large-scale differentiation processes. Until now, however, no evolved felsic asteroidal crust has been sampled or observed. Here we report age and compositional data for the newly discovered, paired and differentiated meteorites Graves Nunatak (GRA) 06128 and GRA 06129. These meteorites are feldspar-rich, with andesite bulk compositions. Their age of 4.52 +/- 0.06 Gyr demonstrates formation early in Solar System history. The isotopic and elemental compositions, degree of metamorphic re-equilibration and sulphide-rich nature of the meteorites are most consistent with an origin as partial melts from a volatile-rich, oxidized asteroid. GRA 06128 and 06129 are the result of a newly recognized style of evolved crust formation, bearing witness to incomplete differentiation of their parent asteroid and to previously unrecognized diversity of early-formed materials in the Solar System.
Mesozoic contraction deformation in the Yanshan and Taihang mountains is characterized by basement-involved thrust tectonics, basement-cored buckling anticlines and ductile thrust and nappe tectonics. Most of these deformations are orientated west-east, west-northwest and northeast to north-northeast. The contraction deformations began in the Permian, continued through the Triassic and Jurassic and terminated in the Early Cretaceous, and constitute an important part of the destruction of the North China Craton. It is estimated, from balanced cross-section reconstructions, that the north-south shortening of the central part of the Yanshan belt before 135 Ma was around 38%. The initial crust thickness, pre-dating the major contraction deformation in late Paleozoic and early Mesozoic, was estimated to be around 35 km based on paleogeographic characteristics. Assuming that the inferred depth of ductile thrusting deformation, 20-25 km, was the crust thickness involved in the contraction deformation, and also assuming that the N-S contraction deformation was accommodated by vertical crust thickening, the thickness of the crust after the contraction deformation was expected to be around 47-50 km. This was the approximate crust thickness required for the eclogitization of the lower crust for delamination. The gravity potential accumulated by the isostatic uplift of the thickened crust, together with the decrease in crustal strength caused by the coeval magmatisms associated with the contraction deformation, led to the subsequent extensional collapse of the middle and upper crust although the regional stress regime associated with the plate interactions remained constant. It is inferred that the Mesozoic contraction deformations in the Yanshan and Taihang mountains were not only a significant tectonic process contributing to the destruction of the craton in middle and upper crust but also stimulated delamination at a deep level and the extension of the shallow crust. In other words, both the suspected delamination of the lower crust and upper mantle and the well constrained extension deformations of the shallow crust in the eastern North China Craton during the late Mesozoic are a consequence of crust thickening due to previous contractions. Extensional deformations could be expected to occur independently in the shallow crust, and are not necessarily associated with or responding to delamination at a deep level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.