The cell-to-cell transmission of viral resistance is a potential mechanism for amplifying the interferon-induced antiviral response. In this study, we report that interferon-α (IFN-α) induced the transfer of resistance to hepatitis B virus (HBV) from nonpermissive liver nonparenchymal cells (LNPCs) to permissive hepatocytes via exosomes. Exosomes from IFN-α-treated LNPCs were rich in molecules with antiviral activity. Moreover, exosomes from LNPCs were internalized by hepatocytes, which mediated the intercellular transfer of antiviral molecules. Finally, we found that exosomes also contributed to the antiviral response of IFN-α to mouse hepatitis virus A59 and adenovirus in mice. Thus, we propose an antiviral mechanism of IFN-α activity that involves the induction and intercellular transfer of antiviral molecules via exosomes.
This review introduces the recent advance in the construction of MOF-based sensing platforms in chemical sensing and biosensing. In particular, the fabricating strategies of MOF-based luminescent sensors and the sensing mechanisms are reviewed.
In higher plants, DREB1/CBF-type transcription factors play an important role in tolerance to low temperatures, drought, and high-salt stress. These transcription factors bind to CRT/DRE elements in promoter regions of target genes, regulating their expression. In this study, we cloned and characterized a novel gene encoding a DREB1 transcription factor from dwarf apple, Malus baccata (GenBank accession number: EF582842). Expression of MbDREB1 was induced by cold, drought, and salt stress, and also in response to exogenous ABA. Subcellular localization analyses revealed that MbDREB1 localizes in the nucleus. A yeast activity assay demonstrated that the MbDREB1 gene encodes a transcription activator, which specifically binds to DRE/CRT elements. Compared with wild-type plants, transgenic Arabidopsis overexpressing MbDREB1 showed increased tolerance to low temperature, drought, and salt stresses. Analysis of the MbDREB1 promoter revealed an ABA-responsive element (ABRE), an inducer of CBF expression 1 (ICE1)-like binding site, two MYB recognition sites, and three stress-inducible GT-1 boxes. GUS activities driven by the MbDREB1 promoter in transgenic Arabidopsis increased in response to ABA, cold temperature, drought, and salt treatments. Interestingly, the expression of both ABA-independent and ABA-dependent stress-induced genes (COR15a and rd29B, respectively) was activated under normal growth conditions in Arabidopsis overexpressing MbDREB1. These results suggest that MbDREB1 functions as a transcription factor and increases plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.