Geotechnical engineering is a new technical system established by European and American countries in the practice of civil engineering in the 1960s. There are many methods to manufacture nanofibers, such as stretching, template synthesis, self-assembly, microphase separation, and electrospinning. Among them, electrospinning is widely used because of its simple operation, wide application range, and relatively high production efficiency. This paper aims to study how to analyze and study the properties of engineering scaffolds along the way based on nanofiber polymers. In this paper, the performance of geotechnical scaffolds is proposed, which is based on nanofibers. This paper focuses on the concept of nanofibers and geotechnical physical mechanics. In this paper, the performance of geotechnical support is designed and analyzed. The experimental results show that the initial thermal decomposition temperature of the pure SF collagen nanofiber membrane is about 250°C and that of the pure PLLA nanofiber membrane is about 330°C. When SF collagen/PLLA = 70 : 30, the initial thermal decomposition temperature of the material is about 260°C. When the mass ratio is 50 : 50, the initial thermal decomposition temperature increases to about 270°C. When the mass ratio is 30 : 70, the initial thermal decomposition temperature increases to about 280°C. This is because PLLA is a semi-crystalline polymer with certain thermal stability. Its heat resistance is better than that of pure SF collagen. With the increase in the amount of PLLA, it can effectively improve the thermal stability of blended composite nanofiber scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.