An improved method of backward ray tracing is proposed according to the theory of geometrical optics and thermal radiation heat transfer. The accuracy is essentially raised comparing to the traditional backward ray tracing because ray orders and weight factors are taken into account and the process is designed as sequential and recurring steps to trace and calculate different order stray lights. Meanwhile, it needs very small computation comparing to forward ray tracing because irrelevant surfaces and rays are excluded from the tracing. The effectiveness was verified in the stray radiation analysis for a cryogenic infrared (IR) imaging system, as the results coincided with the actual stray radiation irradiance distributions in the real images. The computation amount was compared with that of forward ray tracing in the narcissus calculation for another cryogenic IR imaging system, it was found that to produce the same accuracy result, the computation of the improved backward ray tracing is far smaller than that of forward ray tracing by at least 2 orders of magnitude.
Silicon drift detector with high sensitivity and energy resolution is an advanced detector which is suitable to be used in deep space detection. To study and reveal the radiation damage of the silicon drift detector (SDD) in a deep-space environment, which will degrade the detector performance, in this paper, the SDD radiation damage effects and mechanics, including displacement damage and ionization damage, for irradiations of different energy of neutrons and gammas are investigated using Geant4 simulation. The results indicate the recoil atoms distribution generated by neutrons in SDD is uniform, and recoil atoms’ energy is mainly in the low energy region. For secondary particles produced by neutron irradiation, a large energy loss in inelastic scattering and fission reactions occur, and neutron has a significant nuclear reaction. The energy deposition caused by gammas irradiation is linear with the thickness of SDD; the secondary electron energy distribution produced by gamma irradiation is from several eV to incident particle energy. As the scattering angle of secondary electron increases, the number of secondary electrons decreases. Therefore, a reasonable detector epitaxial thickness should be set in the anti-irradiation design of SDD.
Recent micromagnetic simulations have found that particles in the transitional zone between the single domain (SD) and single vortex (SV) zone are prone to thermal and external magnetic field instabilities that could adversely affect the accuracy of interpretations of paleomagnetic recordings. In this study, we attempt to evaluate the internal magnetization characteristics of these magnetically unstable (MU) particles and the influence on paleomagnetic observations by simulating the magnetic behavior of 68–104 nm truncated octahedral magnetite particles using the MERRILL modeling software. We found that: (a) The size region of the “MU zone” for grains of truncated octahedron shape is different from cubic octahedrons and spheres, indicating that the zone may be controlled by the geometry and shape of particles; (b) The MU zone has a range of 79–97 nm region, which is dominated by a hard‐axis aligned single vortex (HSV); and (c) MU particles are unstable as a function of temperature and have low coercive fields. Finally, the numerical fitting of hysteresis parameters for experimental data suggests that the influence of such MU particles in samples should not be ignored, especially for samples with fine‐grained magnetic minerals as the primary magnetic recording carriers. This research has extended our understanding of the behavior of the “MU zone” and its significance on paleomagnetic records.
TiO2 films with a three-dimensional web-like porous structure were prepared using the photo polymerization-induced phase separation method integrated with the pulling coating process. By adjusting the ratio of the substance in the precursor sol and the coating times, the relationships between the sol ratio, the coating times, the film structure, and the performance of the DSC were studied. The optimal film structure was found and a detailed description is given. The performance of the DSC was further improved by introducing the barrier layer and the surface-modified layer of the TiO2 coating. This promoted the short-circuit current density and the photoelectric conversion efficiency of the DSC, the mechanism of which was also investigated. Ultimately, the photoelectric conversion efficiency of the DSC based on the TiO2 anode films with a three-dimensional web-like structure was stabilized at a higher level as a result of the structural improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.