Conventional polymer flooding include polymer flooding, surfactant-polymer flooding (SP), alkaline-surfactant-polymer flooding (ASP), and crosslinked polymer gel flooding. However, these technologies in oilfield, especially in high temperature and high salinity, are limited due to the poor ability of temperature and salinity resistance of polymer. In this work, a novel polymer particle (soft microgel, SMG) is used as the research object under the reservoir condition of high salinity (20 × 104 mg/L) to evaluate the physical and chemical properties of submillimeter-scale SMG and the effect of profile control and oil displacement. The investigation of the physical and chemical properties of submillimeter-scale SMG shows that it has the characteristics of low viscosity, easy injection, good plugging property, swelling property, rheological property, and excellent thermal stability. After 6 months of high temperature and high salinity aging, there is no hydration and hydrolysis of submillimeter-scale SMG as the traditional polymers under high temperature and high salinity. The parallel two-core flooding experiments indicate that the submillimeter-scale SMG has a better effect of profile control and oil displacement, which increases the fraction flow rate( f w ) of low-permeability core from 5.12% before SMG-flooding to 85.29% and the total increase of recovery as high as 14.07%. The comprehensive analysis demonstrates that the submillimeter-scale SMG has the potential to solve the problem that the polymer flooding cannot be applied to the high temperature and high salinity reservoir, and it is also expected to improve the uneven waterflooding in the reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.