Quantum memory is one of the key components constituting a quantum network. An important step towards the successful development of such a network is the storage of single photons. Encoding photons in high-dimensional photonic states can significantly increase the network's information-carrying capacity. Furthermore, quantum memories that are able to store multiple optical modes offer advantages over single-mode memories, both in terms of speed and capacity. However, a practical implementation of such a scheme for storing and retrieving multiple images at the single-photon level has not yet been achieved. Here, we provide the first experimental evidence that two spatial probe fields imprinted with a real image each can be stored and retrieved with good visibility and similarity at the single-photon level in single 85 Rb cold atomic ensemble, making use of electromagnetically induced transparency. Our results are very promising towards the realization of a high-dimensional quantum network in the future.
In order to investigate the altered expression of microRNAs (miRNAs) in the development of autoimmune hepatitis (AIH), the aberrantly expressed miRNAs in the concanavalin A (Con A)-induced AIH mouse model were identified for the first time with microarray in this study. A total of 49 miRNAs (31 up-and 18 down-regulated) were screened out, and the qRT-PCR validation results of 12 chosen miRNAs were consistent with the microarray data. Combined with the profiling of differently expressed mRNAs in the same model (data not shown), 959 predicted target genes (601 for up-and 358 for down-regulated miRNAs) were obtained according to the intersection of databases miRWalk and miRDB, and several hub genes were obtained from the regulatory networks, including Cadm1 and Mier3. These target genes were significantly enriched in the Gene ontology (GO) terms of "transcription, DNA-templated", and were annotated in 47 signaling pathways, comprising "Wnt signaling pathway", "Hippo signaling pathway", "Ferroptosis" and "mitogen-activated protein kinase (MAPK) signaling pathway", according to the GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. In the miRNA-GO-network, mmu-miR-193b-3p were exhibited in 33 GO terms of biological processes (BP), and the most significantly regulated GO term in BP categories was "regulation of transcription, DNA-templated". While in the miRNA-pathway-network, mmu-miR-7005-5p were enriched in 37 pathways, which was more than the other specifically expressed miRNAs, and the most significantly enriched pathways were "Endocytosis" and "MAPK signaling pathway". In conclusion, these differently expressed miRNAs seemed to be associated with the onset of AIH, and have the potential to serve as the new targets on the treatment of this disease.
Background Chemoresistance is one of the major obstacles for tumor treatment. Circular RNAs (circRNAs) have been confirmed to play vital roles in chemoresistance of cancer, including esophageal squamous cell carcinoma (ESCC). We investigated the roles and mechanisms of circ_0007142 in cisplatin (DDP) resistance of ESCC. Methods Quantitative real‐time polymerase chain reaction (qRT‐PCR) was conducted to determine the levels of circ_0007142, DOCK1 mRNA, microRNA‐494‐3p (miR‐494‐3p) and LIM And SH3 Protein 1 (LASP1) mRNA. RNase R assay was conducted to analyze the characteristic of circ_0007142. Cell Counting Kit‐8 (CCK‐8) assay was performed to evaluate IC50 of DDP. Flow cytometry analysis, 5‐ethynyl‐2’‐deoxyuridine (EdU) assay and transwell assay were carried out to examine cell apoptosis, proliferation and invasion, respectively. Dual‐luciferase reporter assay was employed to verify the association between miR‐494‐3p and circ_0007142 or LASP1. Murine xenograft assay was conducted to investigate the role of circ_0007142 in DDP resistant in vivo. The protein level of LASP1 in tumors was measured by Immunohistochemistry (IHC) analysis. Results Circ_0007142 was upregulated in DDP‐resistant ESCC tissues and cells. Circ_0007142 knockdown improved DDP sensitivity, induced cell apoptosis and hampered cell proliferation and invasion in DDP‐resistant ESCC cells. Circ_0007142 functioned as the sponge for miR‐494‐3p and miR‐494‐3p inhibition reversed the impacts of circ_0007142 knockdown on DDP resistance, cell apoptosis, proliferation, and invasion. LASP1 was a target of miR‐494‐3p, and the effects on DDP resistance, cell apoptosis, growth, and invasion mediated by LASP1 downregulation were rescued by miR‐494‐3p inhibition. Moreover, circ_0007142 knockdown enhanced DDP sensitivity in vivo. Conclusion Circ_0007142 improved DDP resistance of ESCC by upregulating LASP1 via sponging miR‐494‐3p.
Changes in long noncoding RNA expression in autoimmune hepatitis (AIH) have not been studied previously. We investigated differentially expressed long noncoding RNAs and differentially expressed mRNAs in a Con A‐induced AIH mouse model with microarray for the first time and reveal expression changes involved in the pathogenesis of AIH. These candidates might have potential to serve as potential diagnostic and therapeutic biomarkers for AIH.
CD279 is a cell surface protein predominantly expressed on T cells. Its ligands CD273 and CD274 are expressed on antigen‐presenting cells and tumors. CD279 has been shown to act as an important immune check point by inhibiting CD8 T cell activation, and antibodies against CD279 enhance T cell‐mediated cytotoxic function. However, whether CD279 has other functions in CD4 T cell homeostasis or in mediating T cell interactions with antigen‐presenting cells remains unclear. In the present study, we show that antibody‐mediated inhibition of CD279 reduces T cell survival in bone marrow in vivo. Unexpectedly, CD279 blockade also compromised regulatory T cell and macrophage interactions by reducing their contact time. The observation that the CD273 antagonist had little effect suggests that CD274 (the second ligand of CD279) plays a more central role in contact between conventional T cells (Tcon) and macrophages. The results of the present study suggest that both CD279 ligands contribute to the interaction length between T cells and macrophages as a mechanism of maintaining Treg homeostasis. Furthermore, CD273 and CD274 are not redundant ligands because CD274 may have unique effects on Tcon in this complex immune axis. Therefore, ligand selection for check point blockade as a tool for cancer immunotherapy has important implications with respect to anti‐tumor T cell activation and the avoidance of side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.