The great losses caused by financial fraud have attracted continuous attention from academia, industry, and regulatory agencies. More concerning, the ongoing coronavirus pandemic (COVID-19) unexpectedly shocks the global financial system and accelerates the use of digital financial services, which brings new challenges in effective financial fraud detection. This paper provides a comprehensive overview of intelligent financial fraud detection practices. We analyze the new features of fraud risk caused by the pandemic and review the development of data types used in fraud detection practices from quantitative tabular data to various unstructured data. The evolution of methods in financial fraud detection is summarized, and the emerging Graph Neural Network methods in the post-pandemic era are discussed in particular. Finally, some of the key challenges and potential directions are proposed to provide inspiring information on intelligent financial fraud detection in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.