Staphylococcus aureus ( S. aureus) is a causative agent in life-threatening human diseases that afflict millions of people annually. Traditional antibiotic treatments are becoming less efficient because S. aureus can invade host cells including osteoblasts and macrophages, constituting a reservoir that is relatively protected from antibiotics that can lead to recrudescent infection. We herein report a unique intracellular antibiotic delivery nanoparticle, which is composed of (i) a mesoporous silica nanoparticle (MSN) core loaded with gentamicin, (ii) an infected microenvironment (bacterial toxin)-responsive lipid bilayer surface shell, and (iii) bacteria-targeting peptide ubiquicidin (UBI) that is immobilized on the lipid bilayer surface shell. The lipid material acts as a gate that prevents drug release before the MSNs reach the target cells or tissue, at which point they are degraded by bacterial toxins to rapidly release the drug, thus eliminating efficient bacteria. We confirm rapid drug release in the presence of bacteria in an extracellular model and observe that S. aureus growth is effectively inhibited both in vitro and in vivo of planktonic and intracellular infection. The inflammation-related gene expression in infected preosteoblast or macrophage is also downregulated significantly after treatment by the antibiotic delivery nanoparticles. The antibiotic delivery nanoparticles offer advantages in fighting intracellular pathogens and eliminating the inflammation caused by intracellular bacterial infections.
Buruli ulcer (BU) is an emerging infectious disease that causes disfiguring skin ulcers. The causative agent, Mycobacterium ulcerans, secretes toxin called mycolactone that triggers inflammation and immunopathology. Existing treatments are lengthy and consist of drugs developed for tuberculosis. Here, we report that a pyrazolo[1,5-a]pyridine-3-carboxamide, TB47, is highly bactericidal against M. ulcerans both in vitro and in vivo. In the validated mouse model of BU, TB47 alone reduces M. ulcerans burden in mouse footpads by more than 2.5 log10 CFU compared to the standard BU treatment regimen recommended by the WHO. We show that mutations of ubiquinol-cytochrome C reductase cytochrome subunit B confer resistance to TB47 and the dissimilarity of CydABs from different mycobacteria may account for their differences in susceptibility to TB47. TB47 is highly potent against M. ulcerans and possesses desirable pharmacological attributes and low toxicity that warrant further assessment of this agent for treatment of BU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.