Sepsis induces neuroinflammation and cognitive impairment, which were attenuated by amantadine. Toll-like receptors 2 mediates these sepsis effects but may not be the major target for amantadine to reduce these effects.
A compound droplet subject to three-dimensional oscillatory shear flow is studied using a three-phase lattice Boltzmann model. Firstly, focusing on low values of capillary number ( Ca ) where the compound droplet eventually reaches steady-state oscillatory condition, we study the effect of oscillatory period, viscosities of inner and outer fluids of the compound droplet, wall confinement and Ca on the droplet behavior. As the oscillatory period increases, the maximum deformation parameters gradually approach the steady-state values in the corresponding simple shear flow for both inner and outer droplets, and the compound droplet is more synchronous with applied shear. We demonstrate for the first time that due to high pressure near two tips inside the outer droplet the inner droplet may rotate counterintuitively in a direction opposite to the outer one. The compound droplet undergoes larger deformation when either droplet is less viscous, which also decreases the synchronization between inner and outer droplets. Increasing confinement ratio not only promotes the deformations of both constituent droplets, but also makes them more synchronous with applied shear. It is also found that the maximum deformation parameters of both droplets increase linearly with Ca up to Ca = 0 . 35 but deviate from the linearity at higher Ca , where multipeaked oscillations are observed for the deformation of the inner droplet, which can be due to the extensional flow resulting from the rapid contraction of the outer droplet. We then analyze the breakup behavior of compound droplet in the oscillatory shear flow for varying confinement ratios, and compare the findings with those in simple shear flow. The critical capillary number for droplet breakup exhibits a non-monotonic behavior with the confinement ratio in both shear flows, but its value is always higher in oscillatory shear flow than in simple shear flow. As the confinement ratio increases, in the case of oscillatory shear flow, the droplet undergoes a transition from inner ternary breakup to inner binary breakup, distinct from the one observed in the case of simple shear flow. Finally, increasing oscillatory period is found to not only decrease the critical capillary number but also change the mode of droplet breakup.
A numerical method for simulating three-phase flows with moving contact lines on arbitrarily complex surfaces is developed in the framework of lattice Boltzmann method. In this method, the immiscible three-phase flow is modeled through a multiple-relaxation-time color-gradient model, which not only allows for a full range of interfacial tensions but also produces stable outcomes for a wide range of viscosity ratios. A characteristic line model is introduced to implement the wetting boundary condition, which is not only easy to implement but also able to handle arbitrarily complex boundaries with prescribed contact angles. The developed method is first validated by the simulation of a Janus droplet resting on a flat surface, a perfect Janus droplet deposited on a cylinder, and the capillary intrusion of ternary fluids for various viscosity ratios. It is then used to study a compound droplet subject to a uniform incoming flow passing through a multi-pillar structure, where three different values of
With the continuous development and improvement of university education, providing students with refined and comprehensive learning environment has come to be a problem of great importance and significance to the people. The state carries out quality-oriented education through a series of measures of education reform. These measures and standards not only help to improve the overall quality of students, but also put forward higher requirements for planning and architectural design of university campuses. In fact, the development of university campuses has been severely restricted by serious contradictions between the shortage of urban construction land and the expansion of middle school campuses. Therefore, in the case of limited construction land resources, how to integrate and optimize the building space and function of campus, improve the utilization rate of building space, make full use of the limited construction land, and create a rich and diverse space environment are difficult problems that are faced in the design of today’s universities. In this paper, we discuss the integration strategy of main entrance space of university campus city through empirical research and put forward 4 value evaluation dimensions and 24 value evaluation factors. Moreover, we construct a numerical and geometric evaluation model, i.e., “CPCC,” to complete the evaluation and optimization of the integration strategy. The purpose is to provide reference for the research object and same type of space on the interface of university campus city. We observed that the proposed CPCC model can effectively promote the historical process of the integration and symbiosis between the university campus and city.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.