Purpose This phase I study assessed the safety, tolerability, pharmacokinetics, antitumor activity, and predictive biomarkers of pyrotinib, an irreversible pan-ErbB inhibitor, in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. Patients and Methods Pyrotinib was administered continuously, orally, once per day to patients who did not have prior exposure to tyrosine kinase inhibitors of HER2. Planned dose escalation was 80, 160, 240, 320, 400, and 480 mg. For pharmacokinetic analysis, timed blood samples were collected on day 1 and day 28. Next-generation sequencing was performed on circulating tumor DNA and genomic DNA from tumor samples. Results Thirty-eight patients were enrolled. The dose-limiting toxicity was grade 3 diarrhea, which occurred in two patients administered 480 mg of pyrotinib; thus, the maximum tolerated dose was 400 mg. Common pyrotinib-related adverse events included diarrhea (44.7% [17 of 38]), nausea (13.2% [five of 38]), oral ulceration (13.2% [five of 38]), asthenia (10.5% [four of 38]), and leukopenia (10.5% [four of 38]). The only grade 3 adverse event was diarrhea. Pharmacokinetic analyses indicated that pyrotinib exposure was dose dependent. The overall response rate was 50.0% (18 of 36), and the clinical benefit rate (complete response + partial response + stable disease ≥ 24 weeks) was 61.1% (22 of 36). The median progression-free survival was 35.4 weeks (95% CI, 23.3 to 40.0 weeks). The overall response rate was 83.3% (10 of 12) in trastuzumab-naive patients and 33.3% (eight of 24) in trastuzumab-pretreated patients. Preliminary results suggest that PIK3CA and TP53 mutations in circulating tumor DNA ( P = .013) rather than in archival tumor tissues ( P = .474) may predict the efficacy of pyrotinib. Conclusion Continuous once-per-day pyrotinib was well tolerated and demonstrated promising antitumor activity in HER2-positive patients with metastatic breast cancer. The maximum tolerated dose was established as 400 mg. Diarrhea was the dose-limiting toxicity. The promising antitumor activity and acceptable tolerability of pyrotinib warrant its further evaluation in a phase II study.
Marie Unna hereditary hypotrichosis (MUHH) is an autosomal dominant form of genetic hair loss. In a large Chinese family carrying MUHH, we identified a pathogenic initiation codon mutation in U2HR, an inhibitory upstream ORF in the 5' UTR of the gene encoding the human hairless homolog (HR). U2HR is predicted to encode a 34-amino acid peptide that is highly conserved among mammals. In 18 more families from different ancestral groups, we identified a range of defects in U2HR, including loss of initiation, delayed termination codon and nonsense and missense mutations. Functional analysis showed that these classes of mutations all resulted in increased translation of the main HR physiological ORF. Our results establish the link between MUHH and U2HR, show that fine-tuning of HR protein levels is important in control of hair growth, and identify a potential mechanism for preventing hair loss or promoting hair removal.
cMononuclear cytotrophoblasts of the human placenta proliferate rapidly, subsequently fuse, and differentiate to form multinucleated syncytiotrophoblast with induction of aromatase (hCYP19A1) and chorionic gonadotropin (hCG) expression. Using microarray analysis, we identified members of the miR-17ϳ92 cluster and its paralogs, miR-106aϳ363 and miR-106bϳ25, that are significantly downregulated upon syncytiotrophoblast differentiation. Interestingly, miR-19b and miR-106a directly targeted hCYP19A1 expression, while miR-19b also targeted human GCM1 (hGCM1), a transcription factor critical for mouse labyrinthine trophoblast development. Overexpression of these microRNAs (miRNAs) impaired syncytiotrophoblast differentiation. hGCM1 knockdown decreased hCYP19A1 and hCG expression, substantiating its important role in human trophoblast differentiation. Expression of the c-Myc proto-oncogene was increased in proliferating cytotrophoblasts compared to that in differentiated syncytiotrophoblast. Moreover, c-Myc overexpression upregulated miR-17ϳ92 and inhibited hCYP19A1 and hCG expression. Binding of endogenous c-Myc to genomic regions upstream of the miR-17ϳ92 and miR-106aϳ363 clusters in cytotrophoblasts dramatically decreased upon syncytiotrophoblast differentiation. Intriguingly, we observed higher levels of miR-106a and -19b and lower aromatase and hGCM1 expression in placentas from preeclamptic women than in placentas from gestation-matched normotensive women. Our findings reveal that c-Myc-regulated members of the miR-17ϳ92 and miR106aϳ363 clusters inhibit trophoblast differentiation by repressing hGCM1 and hCYP19A1 and suggest that aberrant regulation of these miRNAs may contribute to the pathogenesis of preeclampsia.T he multinucleated syncytiotrophoblast of the human placenta is formed by fusion of underlying proliferating cytotrophoblasts. This multinucleated cell layer, which covers the chorionic villi, is bathed in maternal blood and performs several essential functions to ensure growth and survival of the developing embryo. These include transport of O 2 and nutrients and synthesis and secretion of syncytiotrophoblast-specific protein and steroid hormones, including estrogen and progesterone. Synthesis of estrogens from C 19 steroids is catalyzed by aromatase P450 (P450arom, product of the hCYP19A1 gene). The ability of the human placenta to synthesize estrogens is vastly increased after the ninth week of gestation (1), in association with cytotrophoblast invasion and enlargement of the uterine arterioles, increased blood flow, and O 2 availability to the floating chorionic villi (2, 3). Trophoblast stem cells and cytotrophoblasts do not express hCYP19A1/aromatase; however, when cytotrophoblasts fuse to form multinucleated syncytiotrophoblast, aromatase is markedly induced (4, 5). The exceptionally high levels of placental aromatase likely function to metabolize large amounts of C 19 steroids produced by the human fetal adrenals (e.g., dehydroepiandrosterone), thus preventing conversion of these steroids t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.