This paper proposes an improved Bacterial Foraging Optimization for economically optimal dispatching of the microgrid. Three optimized steps are presented to solve the slow convergence, poor precision, and low efficiency of traditional Bacterial Foraging Optimization. First, the self-adaptive step size equation in the chemotaxis process is present, and the particle swarm velocity equation is used to improve the convergence speed and precision of the algorithm. Second, the crisscross algorithm is used to enrich the replication population and improve the global search performance of the algorithm in the replication process. Finally, the dynamic probability and sine-cosine algorithm are used to solve the problem of easy loss of high-quality individuals in dispersal. Quantitative analysis and experiments demonstrated the superiority of the algorithm in the benchmark function. In addition, this study built a multi-objective microgrid dynamic economic dispatch model and dealt with the uncertainty of wind and solar using the Monte Carlo method in the model. Experiments show that this model can effectively reduce the operating cost of the microgrid, improve economic benefits, and reduce environmental pollution. The economic cost is reduced by 3.79% compared to the widely used PSO, and the economic cost is reduced by 5.23% compared to the traditional BFO.
This paper proposes an improved bacterial foraging algorithm for electrical load distribution to impro-ve power plants’ efficiency and reduce energy consumption costs. In the chemotaxis stage, the adaptive step size is introduced to accelerate the random search speed compared with the traditional algorithm. In the replication stage, a hybrid crisscross operator is proposed to replace the traditional binary replication method in the algorithm to ensure the diversity of the population and improve the efficiency of the algorithm. The adaptive dynamic probability is used instead of the initial fixed probability to improve the global search performance of the algorithm. The mathematical model of electrical load distribution in a natural power plant is established, and the improved bacterial foraging algorithm is used to solve the model. Through comparative analysis of two power plant unit experiments, it is proved that the results of the improved algorithm can reduce 3.671% and 1.06% respectively compared with the particle swarm optimization algorithm, and 7.26% and 1.37% respectively compared with the traditional bacterial foraging algorithm, which can significantly reduce the coal consumption of the power plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.