Inhibitory costimulatory molecule CD274 expresses in various cancers and contributes to cancer immune evasion by inhibiting T cell activation and proliferation, yet the regulatory mechanisms for CD274 overexpression in cancers are poorly understood. In this study, we discovered a novel mechanism of CD274 expression regulated by miR-570. A guanine-to-cytosine mutation at the 3'-UTR of CD274 mRNA led to CD274 overexpression by disrupting the miR-570 binding. The mutations were widely observed in cancers by sequencing of 276 gastrointestinal cancers (esophageal, gastric, colorectal, hepatocellular, and pancreatic cancers). This mutation was significantly associated with CD274 overexpression in gastric cancer (P = 1.44×10(-10)) and with the pathological features including differentiation grade, depth of tumor invasion, lymph node metastasis, and tumor-node-metastases (TNM) stage. These findings suggest a novel regulatory mechanism for CD274 overexpression in gastric cancer mediated by miR-570 and a somatic mutation in CD274 3'-UTR, and provide a new insight to gastric carcinogenesis.
Retinoic acid-inducible gene I-like receptor (RLR) is one of the most important pattern recognition receptors of the innate immune system that detects positive and/or negative stranded RNA viruses. Subsequently, it stimulates downstream transcription of interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB) inducing the production of interferons (IFNs) and inflammatory cytokines. Tumour necrosis factor receptor associated factor 6 (TRAF6) is a key protein involved in the RLR-mediated antiviral signalling pathway, recruiting additional proteins to form a multiprotein complex capable of activating the NF-κB inflammatory pathway. Despite TRAF6 playing an important role in regulating host immunity and viral infection, the deubiquitination of TRAF6 induced by viral infection remains elusive. In this study, we found that enterovirus 71 (EV71) infection attenuated the expression of Ubiquitin-specific protease 4 (USP4) in vitro and in vivo, while overexpression of USP4 significantly suppressed EV71 replication. Furthermore, it was found that EV71 infection reduced the RLR signalling pathway and enhanced the degradation of TRAF6. USP4 was also found to interact with TRAF6 and positively regulate the RLR-induced NF-κB signalling pathway, inhibiting the replication of EV71. Therefore, as a novel positive regulator of TRAF6, USP4 plays an essential role in EV71 infection by deubiquitinating K48-linked ubiquitin chains.
Programmed cell death-ligand 1 (PD-L1)/PD-1 axis is critical for maintenance of immune homeostasis by limiting overactivation of effector T-cell responses. The impairment of PD-L1/PD-1 signals play an important role in the pathogenesis of inflammatory diseases, making this pathway an ideal target for novel therapeutics to induce immune tolerance. Given weakly acidic environment as a putative hallmark of inflammation, in this study we designed a new cargo by linking the ectodomain of murine PD-L1 to the N terminus of pHLIPs, a low pH-responding and membrane-insertion peptide, and demonstrated its potent immune-suppressive activity. Specifically, PD-L1-pHLIP spanned the cellular membrane and perfectly recognized its ligand PD-1 in acidic buffer. Immobile PD-L1-pHLIP actively inhibited T-cell proliferation and IFN-γ production. Importantly, soluble PD-L1-pHLIP retained its function to dampen T-cell responses under acidic condition instead of neutral aqueous solution. Overall, these data suggest that PD-L1-pHLIP has potentials to be a novel therapeutic avenue for T-cell-mediated inflammatory diseases.
AGS67E is an antibody drug conjugate (ADC) against CD37 conjugated to monomethyl auristatin E (MMAE). CD37 is expressed on normal WBCs, but is also highly expressed in NHL, CLL and AML (Pereira et al., 2015). A phase I study is currently evaluating the safety, PK and anti-cancer activity of AGS67E with or without growth factor (GF) in subjects with relapsed/refractory NHL. To assess CD37 expression on WBCs, binding of AGS67E, and potential pharmacodynamic effects, samples from subjects were collected at pre-dose, D2, D8, and D15 and analyzed by flow cytometry. CD37 expression on subject tumor samples was also evaluated by immunohistochemistry (IHC). Our results demonstrated that CD37 was highly expressed in tumor samples and that AGS67E binds to WBCs causing down-regulation of CD37, achieving saturation of binding at 24 hours post-treatment (earliest time measured) at or above 0.9 mg/kg. A dose-dependent decrease in the number of all cell types examined was observed with a nadir occurring at D8, with partial or full recovery at D15, except for neutrophils. NK and T cell counts appeared to be least impacted while neutrophils were most affected. B cell counts were extremely low pre-dose for some patients, presumably from prior therapies. In patients treated at 0.9 mg/kg and higher without GF, recovery of neutrophils was delayed beyond D15. At doses of 1.2 mg/kg and higher, use of GF resulted in a significant recovery of neutrophils by D15. The extent of cell count decreases did not correlate to the proportion of cells expressing CD37. For example, decreases in NK cells, monocytes, and, in some cases, T cells, were much greater than the proportion of cells expressing CD37. Furthermore, mature WBCs are unlikely to be affected by AGS67E. This raises the possibility that the main effect of AGS67E may be on rapidly growing precursor cells and that cells with low, or no, CD37 expression may be impacted by the membrane permeable MMAE through a by-stander effect. The effect of AGS67E on neutrophils was investigated in an in vitro assay where hematopoietic stem cells were differentiated into neutrophils. Using this method, we showed that when AGS67C antibody was conjugated to a non-cleavable, membrane impermeable auristatin (mcMMAF) less cytotoxicity to differentiating neutrophils was observed compared to AGS67E. Previously, we have shown that neutrophils secrete proteases that can liberate MMAE from ADCs (Zhao et al, 2016). These results suggest that AGS67E contributes to neutropenia through a by-stander effect, in addition to the CD37-mediated internalization of the ADC. In conclusion, the results showed that AGS67E bound to its target CD37, modulated its expression, achieved saturation of binding at doses at or above 0.9 mg/kg, and reversibly depleted WBCs, with the exception of neutrophils for which GF administration appeared to significantly improve recovery rate. Citation Format: Sher Karki, Hector Avina, Jacqueline Lackey, Ahmed Sawas, Kerry J. Savage, Raymond Perez, Ranjana Advani, Jasmine Zain, Owen A. O'Connor, Sara Gulesserian, Hui Zhao, Peng Yang, Karen Morrison, Leonard Reyno, Fernando Donate. Evaluation of CD37 expression and binding of AGS67E, an antibody-drug conjugate (ADC) against CD37, on white blood cells (WBCs) collected from phase I non-Hodgkin lymphoma (NHL) patients [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2709. doi:10.1158/1538-7445.AM2017-2709
Lactic acid was originally a by‐product of glucose metabolism, but many studies have shown that lactic acid plays a vital role in regulating immune cell polarization, differentiation and effector functions. In this study, we provide evidence that lactic acid and low pH impaired the effector function of CD4+ T cells in response to TCR and non‐TCR stimulation. Specifically, lactic acid or hydrochloric acid treatment significantly decreased IL‐2 and IFN‐γ production as well as CD25/CD69 expression. Furthermore, although MCT1 was required for the suppression of CD25 and CD69 expression by lactic acid, using pharmacological inhibition and genetic deletion, we demonstrated that it was dispensable for lactic acid‐mediated inhibition of IL‐2 and IFN‐γ production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.