Sorghum [Sorghum bicolor (L.) Moench] is one of the most important cereal crops and contains many health-promoting substances. Sorghum has high tolerance to abiotic stress and contains a variety of flavonoids compounds. Flavonoids are produced by the phenylpropanoid pathway and performed a wide range of functions in plants resistance to biotic and abiotic stress. A multiomics analysis of two sorghum cultivars (HN and GZ) under different salt treatments time (0, 24, 48, and 72) was performed. A total of 45 genes, 58 secondary metabolites, and 246 proteins were recognized with significant differential abundances in different comparison models. The common differentially expressed genes (DEGs) were allocated to the “flavonoid biosynthesis” and “phenylpropanoid biosynthesis” pathways. The most enriched pathways of the common differentially accumulating metabolites (DAMs) were “flavonoid biosynthesis,” followed by “phenylpropanoid biosynthesis” and “arginine and proline metabolism.” The common differentially expressed proteins (DEPs) were mainly distributed in “phenylpropanoid biosynthesis,” “biosynthesis of cofactors,” and “RNA transport.” Furthermore, considerable differences were observed in the accumulation of low molecular weight nonenzymatic antioxidants and the activity of antioxidant enzymes. Collectively, the results of our study support the idea that flavonoid biological pathways may play an important physiological role in the ability of sorghum to withstand salt stress.
Background Sorghum is an important food staple in the developing world, with the capacity to grow under severe conditions such as salinity, drought, and a limited nutrient supply. As a serious environmental stress, soil salinization can change the composition of rhizosphere soil bacterial communities and induce a series of harm to crops. And the change of rhizospheric microbes play an important role in the response of plants to salt stress. However, the effect of salt stress on the root bacteria of sorghum and interactions between bacteria and sorghum remains poorly understood. Results The purpose of this study was to assess the effect of salt stress on sorghum growth performance and rhizosphere bacterial community structure. Statistical analysis confirmed that low high concentration stress depressed sorghum growth. Further taxonomic analysis revealed that the bacterial community predominantly consisted of phyla Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Bacteroidetes and Firmicutes in sorghum rhizosphere soil. Low salt stress suppressed the development of bacterial diversity less than high salt stress in both bulk soil and planted sorghum soil. Different sorghum development stages in soils with different salt concentrations enriched distinctly different members of the root bacteria. No obviously different effect on bacterial diversity were tested by PERMANOVA analysis between different varieties, but interactions between salt and growth and between salt and variety were detected. The roots of sorghum exuded phenolic compounds that differed among the different varieties and had a significant relationship with rhizospheric bacterial diversity. These results demonstrated that salt and sorghum planting play important roles in restructuring the bacteria in rhizospheric soil. Salinity and sorghum variety interacted to affect bacterial diversity. Conclusions In this paper, we found that salt variability and planting are key factors in shifting bacterial diversity and community. In comparison to bulk soils, soils under planting sorghum with different salt stress levels had a characteristic bacterial environment. Salinity and sorghum variety interacted to affect bacterial diversity. Different sorghum variety with different salt tolerance levels had different responses to salt stress by regulating root exudation. Soil bacterial community responses to salinity and exotic plants could potentially impact the microenvironment to help plants overcome external stressors and promote sorghum growth. While this study observed bacterial responses to combined effects of salt and sorghum development, future studies are needed to understand the interaction among bacteria communities, salinity, and sorghum growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.