Face anti‐spoofing is critical to prevent face recognition systems from a security breach. The biometrics community has achieved impressive progress recently due to the excellent performance of deep neural networks and the availability of large datasets. Although ethnic bias has been verified to severely affect the performance of face recognition systems, it still remains an open research problem in face anti‐spoofing. Recently, a multi‐ethnic face anti‐spoofing dataset, CASIA‐SURF cross‐ethnicity face anti‐spoofing (CeFA), has been released with the goal of measuring the ethnic bias. It is the largest up to date CeFA dataset covering three ethnicities, three modalities, 1607 subjects, 2D plus 3D attack types and the first dataset including explicit ethnic labels among the recently released datasets for face anti‐spoofing. We organized the Chalearn Face Anti‐spoofing Attack Detection Challenge which consists of single‐modal (e.g. RGB) and multi‐modal (e.g. RGB, Depth, infrared) tracks around this novel resource to boost research aiming to alleviate the ethnic bias. Both tracks have attracted 340 teams in the development stage, and finally, 11 and eight teams have submitted their codes in the single‐modal and multi‐modal face anti‐spoofing recognition challenges, respectively. All of the results were verified and re‐ran by the organizing team, and the results were used for the final ranking. This study presents an overview of the challenge, including its design, evaluation protocol and a summary of results. We analyse the top‐ranked solutions and draw conclusions derived from the competition. Besides, we outline future work directions.
Schizophrenia is a serious mental illness characterized by a disconnection between brain regions. Transcranial magnetic stimulation is a non-invasive brain intervention technique that can be used as a new and safe treatment option for patients with schizophrenia with drug-refractory symptoms, such as negative symptoms and cognitive impairment. However, the therapeutic effects of transcranial magnetic stimulation remain unclear and would be investigated using non-invasive tools, such as functional connectivity (FC). A longitudinal design was adopted to investigate the alteration in FC dynamics using a dynamic functional connectivity (dFC) approach in patients with schizophrenia following high-frequency repeated transcranial magnetic stimulation (rTMS) with the target at the left dorsolateral prefrontal cortex (DLPFC). Two groups of schizophrenia inpatients were recruited. One group received a 4-week high-frequency rTMS together with antipsychotic drugs (TSZ, n = 27), while the other group only received antipsychotic drugs (DSZ, n = 26). Resting-state functional magnetic resonance imaging (fMRI) and psychiatric symptoms were obtained from the patients with schizophrenia twice at baseline (t1) and after 4-week treatment (t2). The dynamics was evaluated using voxel- and region-wise FC temporal variability resulting from fMRI data. The pattern classification technique was used to verify the clinical application value of FC temporal variability. For the voxel-wise FC temporary variability, the repeated measures ANCOVA analysis showed significant treatment × time interaction effects on the FC temporary variability between the left DLPFC and several regions, including the thalamus, cerebellum, precuneus, and precentral gyrus, which are mainly located within the cortico-thalamo-cerebellar circuit (CTCC). For the ROI-wise FC temporary variability, our results found a significant interaction effect on the FC among CTCC. rTMS intervention led to a reduced FC temporary variability. In addition, higher alteration in FC temporal variability between left DLPFC and right posterior parietal thalamus predicted a higher remission ratio of negative symptom scores, indicating that the decrease of FC temporal variability between the brain regions was associated with the remission of schizophrenia severity. The support vector regression (SVR) results suggested that the baseline pattern of FC temporary variability between the regions in CTCC could predict the efficacy of high-frequency rTMS intervention on negative symptoms in schizophrenia. These findings confirm the potential relationship between the reduction in whole-brain functional dynamics induced by high-frequency rTMS and the improvement in psychiatric scores, suggesting that high-frequency rTMS affects psychiatric symptoms by coordinating the heterogeneity of activity between the brain regions. Future studies would examine the clinical utility of using functional dynamics patterns between specific brain regions as a biomarker to predict the treatment response of high-frequency rTMS.
Objective To analyze and discuss the application of synaesthesia theory in modern product design and emphasize the important position and necessity of synaesthesia in modern product design. Methods Based on the concept of synesthesia, the value, significance and design principles of synesthesia in modern product design were further analyzed and summarized through the study of concrete examples of shape, color, material and using methods. Conclusion When the concept of synesthesia is applied to product design, it can enhance the expressive force of products, realize users' synesthetic perception, mobilize users' senses to give psychological suggestions, meet users' various psychological needs, and bring users a richer physical and mental experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.