Near-field electrospinning (NFES) was developed to overcome the intrinsic instability of traditional electrospinning processes and to facilitate the controllable deposition of nanofibers under a reduced electric field. This technique offers a straightforward and versatile method for the precision patterning of two-dimensional (2D) nanofibers. However, three-dimensional (3D) stacked structures built by NFES have been limited to either micron-scale sizes or special shapes. Herein, we report on a direct-write 3D NFES technique to construct self-aligned, template-free, 3D stacked nanoarchitectures by simply adding salt to the polymer solution. Numerical simulations suggested that the electric field could be tuned to achieve self-aligned nanofibers by adjusting the conductivity of the polymer solution. This was confirmed experimentally by using poly(ethylene oxide) (PEO) solutions containing 0.1−1.0 wt% NaCl. Using 0.1 wt% NaCl, nanowalls with a maximum of 80 layers could be built with a width of 92 ± 3 nm, height of 6.6 ± 0.1 μm, and aspect ratio (height/width) of 72. We demonstrate the 3D printing of nanoskyscrapers with various designs, such as curved "nanowall arrays", nano "jungle gyms," and "nanobridges". Further, we present an application of the 3D stacked nanofiber arrays by preparing transparent and flexible polydimethylsiloxane films embedded with Ag-sputtered nanowalls as 3D nanoelectrodes. The conductivity of the nanoelectrodes can be precisely tuned by adjusting the number of 3D printed layers, without sacrificing transmittance (98.5%). The current NFES approach provides a simple, reliable route to build 3D stacked nanoarchitectures with high-aspect ratios for potential application in smart materials, energy devices, and biomedical applications.
The liver is one of the most common sites of breast cancer metastasis and is associated with high lethality. Although the interaction between tumor cells and their microenvironment at metastatic sites has been recognized as a key regulator of tumor progression, the underlying mechanism is not fully elucidated. Here, we describe a three-dimensional (3D) microfluidic human liver-on-a-chip (liver-chip) that emulates the formation of a premetastatic niche to investigate the roles of breast cancerderived extracellular vesicles (EVs) in liver metastasis. We demonstrate that breast cancer-derived EVs activate liver sinusoidal endothelial cells (LSECs) in the liver-chip, inducing endothelial to mesenchymal transition and destruction of vessel barriers. In addition, we show that transforming growth factor β1 (TGFβ1) in breast cancer-derived EVs upregulates fibronectin, an adhesive extracellular matrix protein, on LSECs, which facilitates the adhesion of breast cancer cells to the liver microenvironment. Furthermore, we observed that EVs isolated from triple-negative breast cancer (TNBC) patients with liver metastasis contain higher TGFβ1 levels and induce adhesion of more breast cancer cells to the 3D human liver-chip than do EVs isolated from healthy donors or nonmetastatic TNBC patients. These findings provide a better understanding of the mechanisms through which breast cancer-derived EVs guide secondary metastasis to the liver. Furthermore, the 3D human liver-chip described in this study provides a platform to investigate the mechanisms underlying secondary metastasis to the liver and possible therapeutic strategies.
ELISA-based devices are promising tools for the detection of low abundant proteins in biological samples. Reductions of the sample volume and assay time as well as full automation are required for their potential use in point-of-care diagnostic applications. Here, we present a highly efficient lab-on-a-disc composed of a TiO2 nanofibrous mat for sensitive detection of serum proteins with a broad dynamic range, with only 10 μL of whole blood within 30 min. The TiO2 nanofibers provide high specific surface area as well as active functional groups to capture large amounts of antibodies on the surface. In addition, the device offers efficient mixing and washing for improving the signal-to-noise ratio, thus enhancing the overall detection sensitivity. We employ the device for the detection of cardiac biomarkers, C-reactive protein (CRP) and cardiac troponin I (cTnI), spiked in phosphate-buffered saline (PBS) as well as in serum or whole blood. The device exhibited a wide dynamic range of six orders of magnitude from 1 pg mL(-1) (~8 fM) to 100 ng mL(-1) (~0.8 pM) and a low detection limit of 0.8 pg mL(-1) (~6 fM) for CRP spiked in CRP-free serum and a dynamic range of 10 pg mL(-1) (~0.4 pM) to 100 ng mL(-1) (~4 nM) with a detection limit of 37 pg mL(-1) (~1.5 pM) for cTnI spiked in whole blood.
Recently, there has been increased interest in electrospun-titanium dioxide nanofibers (TiO2 NFs) as antibacterial agents owing to their advantages, such as simple and cost-effective fabrication processes, and high surface areas. However, the photocatalytic effects of TiO2 NFs are relatively low because of their low-ordered crystalline structure, and the antibacterial effect is only effective under UV illumination owing to their large band-gap energy. In this paper, we have demonstrated a significantly enhanced antibacterial activity of hierarchical anatase TiO2 NFs against Staphylococcus aureus in the presence of UV light. Furthermore, the uniform deposition of a large quantity of Ag nanoparticles on the surface of the TiO2 NFs ensured a significant enhancement of the antibacterial performance, even under dark conditions. These results were obtained by exploiting the enhanced photocatalytic effect achieved through control of the crystallinity, as well as the enhanced surface area of the nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.