In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.
BackgroundWe previously reported that polyploid giant cancer cells (PGCCs) exhibit cancer stem cell properties and express cell cycle-related proteins. HEY PGCCs induced by cobalt chloride generated daughter cells and the daughter cells had a strong migratory and invasive ability. This study is to compare the expression of cyclin E, S-phase kinase-associated protein 2 (SKP2), and stathmin between PGCCs with budding and control HEY cells, and determine the clinicopathological significance of cell cycle-related protein expression in ovarian tumors.MethodsWe used western blot and immunocytochemical staining to compare the expression levels of cyclin E, SKP2 and stathmin between PGCC with budding daughter cells and control HEY cells. In addition, immunohistochemical staining for cyclin E, SKP2 and stathmin was performed on a total of 80 paraffin-embedded serous ovarian tumor tissue samples. The samples included 21 cases of primary high-grade carcinoma (group I) and their metastatic tumors (group II), 26 cases of primary low-grade carcinoma without metastasis (group III), and 12 cases of serous borderline cystadenoma (group IV).ResultsSingle PGCC with budding in the stroma showed high correlation with the metastasis of ovarian carcinoma. Group I had a significantly higher number of single PGCCs with budding in the stroma than group III (85.71% [18/21] vs. 23.08% [6/26] cases; χ2 = 18.240, P = 0.000). The expression of cyclin E, SKP2, and stathmin was compared among the four groups. The expression levels of cyclin E, SKP2, and stathmin increased with the malignant grade of ovarian tumors and group II had the highest expression levels. The expression of cyclin E (χ2 = 17.985, P = 0.000), SKP2 (χ2 = 12.384, P = 0.000), and stathmin (χ2 = 20.226, P = 0.000) was significantly different among the 4 groups.ConclusionsThese data suggest that the cell cycle-related proteins cyclin E, SKP2, and stathmin may be valuable biomarkers to evaluate the metastasis in patients with ovarian serous carcinoma.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2407-14-576) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.